Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (4): 289-295    DOI: 10.11901/1005.3093.2024.403
  研究论文 本期目录 | 过刊浏览 |
MXene@碳纤维毡复合薄膜的电磁屏蔽性能
孙波1, 张天宇2,3, 赵强强2,3, 王函2,3, 佟钰1(), 曾尤2,3()
1.沈阳建筑大学材料科学与工程学院 沈阳 110168
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.中国科学技术大学材料科学与工程学院 沈阳 110016
Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films
SUN Bo1, ZHANG Tianyu2,3, ZHAO Qiangqiang2,3, WANG Han2,3, TONG Yu1(), ZENG You2,3()
1.School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
2.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
Bo SUN, Tianyu ZHANG, Qiangqiang ZHAO, Han WANG, Yu TONG, You ZENG. Electromagnetic Shielding Performance of MXene@Carbon Fiber Felt Composite Films[J]. Chinese Journal of Materials Research, 2025, 39(4): 289-295.

全文: PDF(13143 KB)   HTML
摘要: 

用喷涂雾化沉积工艺将MXene二维纳米片层结构涂覆在碳纤维毡(CFF)的表面制备MXene@CFF复合薄膜,研究了MXene含量对其微观结构、导电性以及电磁屏蔽性能的影响。结果表明,MXene的引入可显著提高CFF的导电性和电磁屏蔽性能,MXene的质量分数为2.37%的复合薄膜其表面电阻率从9.3 Ω/sq降低到2.7 Ω/sq;在X波段(8.2~12.4 GHz)复合薄膜的电磁屏蔽性能达到57.9 dB,比CFF提高了27.8%,且其主要机制是电磁波的反射(反射系数达0.95)。这些性能,可归因于MXene的高导电性、复合薄膜的多层次孔结构以及界面多重反射与吸收损耗的协同作用。

关键词 复合材料电磁屏蔽性能导电性MXene碳纤维毡    
Abstract

Development of lightweight, flexible, and high-efficiency electromagnetic shielding films is urgently required for practical application for wearable devices, thin-film electronics, and miniaturized equipment. In order to significantly enhance the electrical conductivity and electromagnetic shielding effectiveness (EMI SE) of carbon fiber felts (CFFs), MXene nanosheets were well dispersed in ethanol aqueous solutions and then spray-deposited onto CFF surfaces to fabricate MXene@CFF composite films. The effect of MXene deposition on the micromorphology, electrical conductivity and EMI SE of the composite films was investigated in detail. The results showed that the incorporation of MXene could significantly improve the EMI shielding performance. The surface electrical resistivity of the composite films with 2.37% (mass fraction) MXene decreased from 9.3 Ω/sq to 2.7 Ω/sq, while the EMI SE in the range of 8.2~12.4 GHz (X-band) increased to 57.9 dB, increasing by 27.8% in comparison with that of the bare CFFs. This performance improvement may mainly be attributed to the enhanced electrical conductivity of MXene-coated CFFs, the hierarchical porous structure, and the increased multiple reflection and absorption at multi-component interfaces.

Key wordscomposite    electromagnetic shielding performance    electrical conductivity    MXene    carbon fiber felt
收稿日期: 2024-09-30     
ZTFLH:  TB332  
基金资助:国家自然科学基金(52472056);国家自然科学基金(52130209);辽宁省应用基础研究计划项目(2023JH26/10300015);辽宁省自然科学基金(22-KF-12-04);纳米功能复合材料山西省重点实验室开放基金(NFCM202102);沈阳市科技计划项目(22-316-1-04)
通讯作者: 曾 尤,研究员,yzeng@imr.ac.cn,研究方向为纳米炭复合材料;
佟 钰,副教授,tong_yu123@hotmail.com,研究方向为微纳米复合结构
Corresponding author: ZENG You, Tel: (024)83978090, E-mail: yzeng@imr.ac.cn;
TONG Yu, Tel: (024)24690300, E-mail: tong_yu123@hotmail.com
作者简介: 孙 波,女,2000年生,硕士生
张天宇,男,1996年生,博士生
图1  MXene@CFF复合薄膜的制备流程图、SEM形貌、XRD谱以及EDS图像
图2  MXene@CFF复合薄膜的SEM照片
图3  MXene@CFF复合薄膜的表面电阻率
图4  MXene@CFF复合薄膜的电磁屏蔽性能
图5  MXene@CFF复合薄膜的电磁屏蔽机理示意图
1 Liang J Y, Gu Y Z, Bai M, et al. Electromagnetic shielding property of carbon fiber felt made of different types of short-chopped carbon fibers [J]. Composites, 2019, 121: 289
2 Han W D, Qian X, Ma H B, et al. Effect of nickel electroplating followed by a further copper electroplating on the micro-structure and mechanical properties of high modulus carbon fibers [J]. Mater. Today Commun., 2021, 27: 102345
3 Pancrecious J K, Ulaeto S B, Ramya R, et al. Metallic composite coatings by electroless technique-a critical review [J]. Int. Mater. Rev., 2018, 63: 488
4 Zhang J J, Liu S C, Liu J M, et al. Electroless nickel plating and spontaneous infiltration behavior of woven carbon fibers [J]. Mater. Des., 2020, 186: 108301
5 Szadkowski B, Marzec A, Zaborski M. Use of carbon black as a reinforcing Nano-filler in conductivity-reversible elastomer composites [J]. Polym. Test., 2020, 81: 106222
6 Duan H J, Zhu H X, Yang J M, et al. Effect of carbon nanofiller dimension on synergistic EMI shielding network of epoxy/metal conductive foams [J]. Composites, 2019, 118A: 41
7 Im H, Kim J. Enhancement of electrical and thermal conductivities of a polysiloxane/metal complex with metal oxides [J]. Polym. Compos., 2010, 31: 1669
8 Niu Y F, Zhang Y X, Yao J W, et al. Improving resistance-strain effects of conductive polymer composites modified by multiscale fillers: Short carbon fiber and carbon nanotube [J]. Polym. Compos., 2024, 45: 5839
9 Kim W J, Nam K W, Kang B H, et al. Piezoresistive Effect of conductive and non-conductive fillers in bi-layer hybrid CNT composites under extreme strain [J]. Materials (Basel), 2023, 16: 6335
10 Capezza A, Andersson R L, Ström V, et al. Preparation and comparison of reduced graphene oxide and carbon nanotubes as fillers in conductive natural rubber for flexible electronics [J]. ACS Omega, 2019, 4: 3458
doi: 10.1021/acsomega.8b03630 pmid: 31459561
11 Radzuan N A M, Zakaria M Y, Sulong A B, et al. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites [J]. Composites, 2017, 110B: 153
12 Kim J, Al-Rub R K A, Han S M, et al. High-resilience conductive PVA+AgNW/PDMS nanocomposite via directional freeze-drying [J]. Extreme Mech. Lett., 2024, 68: 102132
13 Khan J, Mariatti M. Effect of natural surfactant on the performance of reduced graphene oxide conductive ink [J]. J. Cleaner Prod., 2022, 376: 134254
14 Huang J L, Zhao X W, Wu Y, et al. Facile green path to interconnected Nano-graphite networks to overtake graphene as conductive fillers [J]. Carbon, 2021, 173: 667
15 Gao W W, Zhao N F, Yu T, et al. High-efficiency electromagnetic interference shielding realized in nacre-mimetic graphene/polymer composite with extremely low graphene loading [J]. Carbon, 2020, 157: 570
16 Cho K M, So Y, Choi S E, et al. Highly conductive polyimide nanocomposite prepared using a graphene oxide liquid crystal scaffold [J]. Carbon, 2020, 169: 155
17 Han X, Wang T, Owuor P S, et al. Ultra-Stiff graphene foams as three-dimensional conductive fillers for epoxy resin [J]. ACS Nano, 2018, 12: 11219
doi: 10.1021/acsnano.8b05822 pmid: 30408411
18 Ji Y C, Liu S H, Zhang T Y, et al. Research progress of MXene used in lithium sulfur battery [J]. Chin. J. Mater. Res., 2023, 37: 481
doi: 10.11901/1005.3093.2022.360
18 季雨辰, 刘树和, 张天宇 等. MXene在锂硫电池中应用的研究进展 [J]. 材料研究学报, 2023, 37: 481
doi: 10.11901/1005.3093.2022.360
19 Liu Z S. Preparation of ultrastrong and highly conductive Mxene-based film for electromagnetic interference shielding [D]. Beijing: Beijing University of Chemical Technology, 2021
19 刘张硕. 高强高导电MXene基电磁屏蔽薄膜的制备 [D]. 北京: 北京化工大学, 2021
20 Gogotsi Y, Anasori B. The rise of MXenes [J]. ACS Nano, 2019, 13: 8491
doi: 10.1021/acsnano.9b06394 pmid: 31454866
21 Li Q Y, Liu M L, Zhong B C, et al. Tetramethylammonium hydroxide modified MXene as a functional nanofiller for electrical and thermal conductive rubber composites [J]. Compos. Commun., 2022, 34: 101249
22 Guo Z J, Lu W B, Zhang Y, et al. MXene fillers and silver flakes filled epoxy resin for new hybrid conductive adhesives [J]. Ceram. Int., 2023, 49: 12054
23 Li Q Y, Zhong B C, Zhang W Q, et al. Ti3C2 MXene as a new nanofiller for robust and conductive elastomer composites [J]. Nanoscale, 2019, 11: 14712
24 Liu R, Li J M, Li M, et al. MXene-coated air-permeable pressure-sensing fabric for smart wear [J]. ACS Appl. Mater. Interfaces, 2020, 12: 46446
25 Hu Y, Chen J Z, Yang G Y, et al. Highly conductive and mechanically robust MXene@CF core-shell composites for in-situ damage sensing and electromagnetic interference shielding [J]. Compos. Sci. Technol., 2024, 246: 110356
26 Duan N M, Shi Z Y, Wang Z H, et al. Mechanically robust Ti3C2T x MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications [J]. Mater. Des., 2022, 214: 110382
27 Song C Q, Yin X W, Han M K, et al. Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties [J]. Carbon, 2017, 116: 50
28 Wu Y, Wang Z Y, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Interfaces, 2017, 9: 9059
29 Ma H Y, Zhang X T, Yang L, et al. Electromagnetic wave absorption in graphene nanoribbon nanocomposite foam by multiscale electron dissipation of atomic defects, interfacial polarization and impedance match [J]. Carbon, 2023, 205: 159
30 Ma Y, Wang H, Ni Z Q, et al. Synergistic effect of carbon nanotubes with zinc oxide nanowires for enhanced electromagnetic shielding performance of hybrid carbon fiber/epoxy composites [J]. Chin. J. Mater. Res., 2024, 38: 61
doi: 10.11901/1005.3093.2023.158
30 马 源, 王 函, 倪忠强 等. 碳纳米管/氧化锌协同增强碳纤维复合材料的电磁屏蔽性能 [J]. 材料研究学报, 2024, 38: 61
31 Li T T, Wang X M, Wang Y T, et al. Silver-coated conductive composite fabric with flexible, anti-flaming for electromagnetic interference shielding [J]. J. Appl. Poly. Sci., 2022, 139: 51875
32 Bi J Y, Sun Z H, Guo Z H, et al. Negative permittivity enhanced reflection and adsorption of electromagnetic waves from carbon fiber felt/carbon nanotubes [J]. J. Mater. Chem., 2024, 12A: 13974
33 Lv Q T, Zhu X Y, Zhou T Y, et al. Multifunctional and recyclable aerogel/fiber building insulation composites with sandwich structure [J]. Const. Build. Mater., 2024, 423: 135902
34 Huang M R, Huang Y, Yang H, et al. Ti3C2T x MXene/Fe3O4/carbon fiber fabric/water polyurethane composite fabrics for electromagnetic interference shielding and thermal management [J]. ACS Appl. Nano Mater., 2024, 7: 14921
35 Duan N M, Shi Z Y, Wang J L, et al. Multilayer-structured carbon fiber fabric/graphene oxide/Fe3O4/epoxy composite for highly efficient mechanical and electromagnetic interference shielding [J]. Appl. Surf. Sci., 2023, 613: 156038
[1] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[2] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[3] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[4] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[5] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[6] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[7] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[8] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[9] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[10] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[11] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.
[12] 刘莹, 陈平, 周雪, 孙晓杰, 王瑞琪. 中空FeS2/NiS2/Ni3S2@NC立方体复合材料的制备及其电化学性能[J]. 材料研究学报, 2024, 38(6): 453-462.
[13] 徐东卫, 张明举, 申志豪, 夏晨露, 徐京满, 郭晓琴, 熊需海, 陈平. 氮掺杂碳纳米管原位封装磁性粒子异质结构(Fe3O4@NCNTs)及其轻质宽频吸波性能[J]. 材料研究学报, 2024, 38(6): 430-436.
[14] 边鹏博, 韩修柱, 张峻凡, 朱士泽, 肖伯律, 马宗义. 铝粉粒径和热压温度对15%SiC/2009Al复合材料力学性能的影响[J]. 材料研究学报, 2024, 38(6): 401-409.
[15] 余圣, 郭威, 吕书林, 吴树森. 原位自生相增强Ti-Zr-Cu-Pd-Mo非晶复合材料的制备及其力学性能[J]. 材料研究学报, 2024, 38(2): 105-110.