Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (6): 425-434    DOI: 10.11901/1005.3093.2024.242
  研究论文 本期目录 | 过刊浏览 |
石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能
杨言言1, 刘堰1,2, 杨颂2, 汪紫彤1, 朱峰1, 余钟亮1(), 郝晓刚2()
1.上饶师范学院化学与环境科学学院 上饶 334001
2.太原理工大学化学与化工学院 太原 030024
Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates
YANG Yanyan1, LIU Yan1,2, YANG Song2, WANG Zitong1, ZHU Feng1, YU Zhongliang1(), HAO Xiaogang2()
1.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
2.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
引用本文:

杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
Yanyan YANG, Yan LIU, Song YANG, Zitong WANG, Feng ZHU, Zhongliang YU, Xiaogang HAO. Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. Chinese Journal of Materials Research, 2025, 39(6): 425-434.

全文: PDF(10490 KB)   HTML
摘要: 

采用两步电沉积法制备一种花簇状石墨烯掺杂的聚吡咯/双金属氢氧化物(PPy-G/CoNi-LDH)杂化膜,使用XRD、SEM、XPS和TEM等手段表征其组成、结构和微观形貌。通过电控离子交换技术(Electrically switched ion exchange, ESIX) 将其用于对水中PO43-的吸附/脱附,采用电化学手段研究了磷酸盐浓度、吸附电位、酸碱性以及共存离子等因素对其吸附磷酸根离子性能的影响。结果表明,吸附电位和初始磷酸盐浓度的提高都使PPy-G/CoNi-LDH对PO43-的吸附量提高。在吸附电位为0.8 V条件下对10 mg·L-1溶液中PO43-的吸附量可达40.23 mg·g-1;在中性和微碱性条件下PPy-G/CoNi-LDH的吸附性能良好;在7次循环吸附/脱附过程中,PPy-G/CoNi-LDH的吸附稳定性较高。

关键词 复合材料石墨烯掺杂的聚吡咯钴镍双金属氢氧化物电控离子交换磷酸根分离    
Abstract

The recovery of phosphorus (P) resources from wastewater can alleviate the problem of eutrophication and shortage of phosphate resources. Herein, a flower-like hybrid film of Co-Ni layered double hydroxide grown on graphene doped polypyrrole (PPy-G/CoNi-LDH) with exclusive separation property for phosphate ions was successfully fabricated by using two-steps electrodeposition method, which may be applied for separation and recovery of low concentrated phosphate anions via electrically switched ion exchange (ESIX). The composition, morphology and structure of PPy-G/CoNi-LDH hybrid film were demonstrated by XRD, SEM, XPS, and TEM. The effect of various influencing factors, including phosphate concentrations, absorption potentials, acid-alkalinity, co-existing anions and their concentrations on the electrochemical adsorption performance of hybrid film was also investigated. The results indicate that the increase in absorption potentials and initial concentrations of wastwaters could enhance the adsorption capacity. The adsorption capacity of PPy-G/CoNi-LDH hybrid film for PO43- in 10 mg·L-1 PO43- solution was 40.23 mg·g-1 by an applied absorption potential of 0.8 V. In addition, in conditions of neutral and slightly alkaline solutions, PPy-G/CoNi-LDH hybrid film had good adsorption capacity, and it was minimally affected by coexisting ions and their concentrations. After 7 cycles of adsorption/desorption, the adsorption capacity PPy-G/CoNi-LDH hybrid film still maintained good stability.

Key wordscomposite    graphene doped polypyrrole    CoNi-LDH    electrically switched ion exchange    phosphate anions    separation
收稿日期: 2024-05-29     
ZTFLH:  TB34  
基金资助:国家自然科学基金区域创新发展联合基金(U21A2030);国家自然科学基金(22169017);江西省自然科学基金(20224BAB203026);江西省教育厅项目(GJJ2201823);江西省教育厅项目(GJJ2201824)
通讯作者: 余钟亮,教授,yzh2401@126.com,研究方向为非贵金属催化材料;
郝晓刚,教授,xghao@tyut.edu.cn,研究方向为电驱动膜材料
Corresponding author: YU Zhongliang, Tel: 18734861008, E-mail: yzh2401@126.com;
HAO Xiaogang, Tel: 13073535863, E-mail: xghao@tyut.edu.cn
作者简介: 杨言言,女,1983年生,博士,副教授
图1  PPy-G、CoNi-LDH和PPy-G/CoNi-LDH杂化膜的XRD谱
图2  PPy-G、CoNi-LDH、PPy-G/CoNi-LDH的SEM照片
图3  PPy-G/CoNi-LDH的TEM照片
图4  在10 mg·L-1 PO43-溶液中PPy-G/CoNi-LDH杂化膜在吸附前后的XPS谱
图5  在-1.2 V电位下不同镍钴摩尔比及有无DMF添加条件下PPy-G/CoNi-LDH杂化膜的CV曲线
图6  在不同初始PO43-浓度条件下PPy-G/CoNi-LDH杂化膜的吸附动力学曲线
ρ0 / mg·L-1qe(exp) / mg·g-1Pseudo-first-orderPseudo-second-order
k1 / min-1qe(cal) / mg·g-1R2k2 / g·mg-1·min-1qe(cal) / mg·g-1R2
5075.235.67 × 10-373.220.9975.1 × 10--5107.640.945
3062.505.80 × 10-359.810.9047.6 × 10-585.030.953
1040.235.07 × 10-341.110.9951.0 × 10-444.210.817
516.041.45 × 10-316.540.9473.5 × 10-485.320.386
表1  PPy-G/CoNi-LDH杂化膜在不同初始PO43-浓度条件下对PO43-的吸附动力学
图7  在50 mg·L-1 PO43-溶液中PPy-G/CoNi-LDH杂化膜在不同吸附电位下对PO43-的吸附量和杂化膜在0.9和1.0 V吸附电位下吸附6 h的SEM照片
图8  在10 mg·L-1 PO43-溶液中,PPy-G/CoNi-LDH杂化膜对不同pH值的PO43-的吸附量
图9  在10 mg·L-1 PO43-中,不同浓度Cl-、NO3-和SO42-共存对PPy-G/CoNi-LDH杂化膜吸附PO43-的影响
图10  PPy-G/CoNi-LDH杂化膜在10 mg·L-1 PO43-溶液中的循环稳定性
图11  PPy-GO、CoNi-LDH及PPy-G/CoNi-LDH杂化膜对PO43-的吸附量、PPy-G/CoNi-LDH以不同方式对PO43-的吸附量以及O 1s和N 1s氧化前后的XPS谱
1 Jupp A R, Beijer S, Narain G C, et al. Phosphorus recovery and recycling-closing the loop[J]. Chem. Soc. Rev., 2021, 50(1): 87
2 Daneshgar S, Callegari A, Capodaglio A G, et al. The potential phosphorus crisis: resource conservation and possible escape technologies: a review[J]. Resources, 2018, 7(2): 37
3 Withers P J A, Elser J J, Hilton J, et al. Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability[J]. Green Chem., 2015, 17(4): 2087
4 Wang M, Hu C, Barnes B B, et al. The great Atlantic Sargassum belt[J]. Science, 2019, 365(6448): 83
doi: 10.1126/science.aaw7912
5 Srinivasan R, Sorial G A. Treatment of perchlorate in drinking water: A critical review[J]. Sep. Purif. Technol., 2009, 69(1): 7
6 Ghorbani M, Seyedin O, Aghamohammadhassan M. Adsorptive removal of lead (II) Ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review[J]. J. Environ. Manage., 2020, 254: 109814
7 Chen F, Zeng S, Ma J, et al. Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter[J]. Environ. Sci. Pollut. R, 2019, 26(26): 26721
doi: 10.1007/s11356-019-05896-3
8 Tian Q, Liu Q M, Li F, et al. Regulation of salt tolerance in bacteria and its application in hypersaline BNR process[J]. Chem. Ind. Eng. Prog., 2025, 44: 465
doi: 10.16085/j.issn.1000-6613.2023-2257
8 田 晴, 刘青盟, 李 方 等. 细菌的耐盐调控及其在高盐BNR工艺中的应用[J]. 化工进展, 2025, 44: 465
9 Li X, Shen S T, Xu Y Y, et al. Application of membrane separation processes in phosphorus recovery: A review[J]. Sci Total Environ, 2021, 767: 144346
10 Kumar P S, Korving L, Keesman K J, et al. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics[J]. Chem. Eng. J., 2019, 358: 160
11 Du X, Hao X, Wang Z, et al. Electroactive ion exchange materials: current status in synthesis, applications and future prospects[J]. J. Mater. Chem. A, 2016, 4(17): 6236
12 Gao F F, Du X, Hao X G, et al. A potential-controlled ion pump based on a three-dimensional PPy@GO membrane for separating dilute lead ions from wastewater[J]. Electrochim. Acta, 2017, 236: 434
13 Hong S P, Yoon H, Lee J, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization[J]. J. Colloid Interface Sci., 2020, 564: 1
14 Liu G G, Wang G R, Jin Z L. Graphdiyne-modified NiV-layered double hydroxide nanostructures for supercapacitor applications[J]. ACS Appl. Nano Mater., 2023, 6(23): 21803
15 Gu Y, Yang Z, Zhou J, et al. Graphene/LDHs hybrid composites synthesis and application in environmental protection[J]. Sep. Purif. Technol., 2024, 328: 125042
16 Ma X Q, Zhou J L, Lu N, et al. Preparation and delaminating of glycine-Mg3Al LDHs and its intercalation compounding with montmorillonite[J]. Chin. J. Mater. Res., 2014, 28(2): 100
16 马小茜, 周景龙, 卢 楠 等. 甘氨酸-Mg3Al水滑石的制备、剥离以及与蒙脱土的插层组装[J]. 材料研究学报, 2014, 28(2): 100
doi: 10.11901/1005.3093.2013.372
17 Wang J, Gao F, Du X, et al. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions[J]. Electrochim. Acta, 2020, 331: 135288
18 Zhao W H, Liu T T, Wu N D, et al. Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance[J]. Sci. China Mater., 2023, 66(2): 577
19 Tan S R, Yao Z, Liu Z C, et al. Fabrication and supercapacitor performance of metal organic framework Zn-BTC/rGO nanocomposites with different morphologies[J]. Chin. J. Mater. Res., 2024, 38 (8): 576
19 谭上荣, 姚 焯, 刘泽辰 等. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38 (8): 576
doi: 10.11901/1005.3093.2023.446
20 Zhu Y, An S, Sun X, et al. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance[J]. Chem. Eng. J., 2020, 383: 123206
21 Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors[J]. J. Mater. Chem. A, 2018, 6(31): 15040
22 Ma P, Zhu J, Du X, et al. Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity-variable valence[J]. J. Colloid Interface Sci., 2022, 626: 47
23 Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. J. Power Sources, 2018, 378: 248
24 Wang X L, Zhang D, Shi X M, et al. Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites[J]. Chin. J. Inorg. Chem., 2023, 39(4): 607
24 王晓亮, 张 多, 石雪梅 等. Co金属有机骨架模板制备NiCo水滑石/泡沫镍复合材料及电容性能[J]. 无机化学学报, 2023, 39(4): 607
25 Youmbi B S, Pelisson C H, Denicourt-Nowicki A, et al. Impact of the charge transfer process on the Fe2+/Fe3+ distribution at Fe3O4 magnetic surface induced by deposited Pd clusters[J]. Surf. Sci., 2021, 712: 121879
26 Yang Y Y, Li Y G, Zhu X W, et al. Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film[J]. J. Inorg. Mater., 2021, 36(3): 292
doi: 10.15541/jim20200340
26 杨言言, 李永国, 祝小雯 等. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292
doi: 10.15541/jim20200340
27 Sun B, Hao X G, Wang Z D, et al. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis[J]. J. Hazard. Mater., 2012, 233: 177
28 Yang Y Y, Du X, Abudula A, et al. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism[J]. Sep. Purif. Technol., 2019, 223: 154
29 Cai J, Zhang Y, Pan B, et al. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger[J]. Water Res., 2016, 102: 109
doi: S0043-1354(16)30468-7 pmid: 27337346
30 Du X, Sun X, Zhang H, et al. A facile potential-induced in-situ ion removal trick: fabrication of high-selective ion-imprinted film for trivalent yttrium ion separation[J]. Electrochim. Acta, 2015, 176: 1313
31 Li C, Chen N, Zhao Y, et al. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism[J]. Chemosphere, 2016, 163: 81
doi: S0045-6535(16)31033-5 pmid: 27521642
[1] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[2] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[3] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[4] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[5] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[6] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[7] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[8] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[9] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[10] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[11] 黄闻战, 陈尧, 陈鹏, 张玉洁, 陈星宇. 用二次发泡法制备SiC/Al复合泡沫铝孔结构的稳定性[J]. 材料研究学报, 2024, 38(8): 605-613.
[12] 谭上荣, 姚焯, 刘泽辰, 蒋奕蕾, 郭诗琪, 李丽丽. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38(8): 576-584.
[13] 郝子恒, 郑刘梦晗, 张妮, 蒋恩桐, 王国政, 杨继凯. WO3/PtNiO电极电致变色器件的性能[J]. 材料研究学报, 2024, 38(8): 569-575.
[14] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.
[15] 周慧, 杜彬, 杨鹏斌, 金党琴, 肖伽励, 沈明, 王升文. 鸟巢状Bi/β-Bi2O3 异质结的制备及其可见光催化性能[J]. 材料研究学报, 2024, 38(7): 549-560.