|
|
石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能 |
杨言言1, 刘堰1,2, 杨颂2, 汪紫彤1, 朱峰1, 余钟亮1( ), 郝晓刚2( ) |
1.上饶师范学院化学与环境科学学院 上饶 334001 2.太原理工大学化学与化工学院 太原 030024 |
|
Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates |
YANG Yanyan1, LIU Yan1,2, YANG Song2, WANG Zitong1, ZHU Feng1, YU Zhongliang1( ), HAO Xiaogang2( ) |
1.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China 2.College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China |
引用本文:
杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
Yanyan YANG,
Yan LIU,
Song YANG,
Zitong WANG,
Feng ZHU,
Zhongliang YU,
Xiaogang HAO.
Performance of Graphene-doped Polypyrrole/Co-Ni Double Hydroxide for Electronic Separation of Low Concentration Phosphates[J]. Chinese Journal of Materials Research, 2025, 39(6): 425-434.
1 |
Jupp A R, Beijer S, Narain G C, et al. Phosphorus recovery and recycling-closing the loop[J]. Chem. Soc. Rev., 2021, 50(1): 87
|
2 |
Daneshgar S, Callegari A, Capodaglio A G, et al. The potential phosphorus crisis: resource conservation and possible escape technologies: a review[J]. Resources, 2018, 7(2): 37
|
3 |
Withers P J A, Elser J J, Hilton J, et al. Greening the global phosphorus cycle: How green chemistry can help achieve planetary P sustainability[J]. Green Chem., 2015, 17(4): 2087
|
4 |
Wang M, Hu C, Barnes B B, et al. The great Atlantic Sargassum belt[J]. Science, 2019, 365(6448): 83
doi: 10.1126/science.aaw7912
|
5 |
Srinivasan R, Sorial G A. Treatment of perchlorate in drinking water: A critical review[J]. Sep. Purif. Technol., 2009, 69(1): 7
|
6 |
Ghorbani M, Seyedin O, Aghamohammadhassan M. Adsorptive removal of lead (II) Ion from water and wastewater media using carbon-based nanomaterials as unique sorbents: A review[J]. J. Environ. Manage., 2020, 254: 109814
|
7 |
Chen F, Zeng S, Ma J, et al. Treatment of chlorpyrifos manufacturing wastewater by peroxide promoted-catalytic wet air oxidation, struvite precipitation, and biological aerated biofilter[J]. Environ. Sci. Pollut. R, 2019, 26(26): 26721
doi: 10.1007/s11356-019-05896-3
|
8 |
Tian Q, Liu Q M, Li F, et al. Regulation of salt tolerance in bacteria and its application in hypersaline BNR process[J]. Chem. Ind. Eng. Prog., 2025, 44: 465
doi: 10.16085/j.issn.1000-6613.2023-2257
|
8 |
田 晴, 刘青盟, 李 方 等. 细菌的耐盐调控及其在高盐BNR工艺中的应用[J]. 化工进展, 2025, 44: 465
|
9 |
Li X, Shen S T, Xu Y Y, et al. Application of membrane separation processes in phosphorus recovery: A review[J]. Sci Total Environ, 2021, 767: 144346
|
10 |
Kumar P S, Korving L, Keesman K J, et al. Effect of pore size distribution and particle size of porous metal oxides on phosphate adsorption capacity and kinetics[J]. Chem. Eng. J., 2019, 358: 160
|
11 |
Du X, Hao X, Wang Z, et al. Electroactive ion exchange materials: current status in synthesis, applications and future prospects[J]. J. Mater. Chem. A, 2016, 4(17): 6236
|
12 |
Gao F F, Du X, Hao X G, et al. A potential-controlled ion pump based on a three-dimensional PPy@GO membrane for separating dilute lead ions from wastewater[J]. Electrochim. Acta, 2017, 236: 434
|
13 |
Hong S P, Yoon H, Lee J, et al. Selective phosphate removal using layered double hydroxide/reduced graphene oxide (LDH/rGO) composite electrode in capacitive deionization[J]. J. Colloid Interface Sci., 2020, 564: 1
|
14 |
Liu G G, Wang G R, Jin Z L. Graphdiyne-modified NiV-layered double hydroxide nanostructures for supercapacitor applications[J]. ACS Appl. Nano Mater., 2023, 6(23): 21803
|
15 |
Gu Y, Yang Z, Zhou J, et al. Graphene/LDHs hybrid composites synthesis and application in environmental protection[J]. Sep. Purif. Technol., 2024, 328: 125042
|
16 |
Ma X Q, Zhou J L, Lu N, et al. Preparation and delaminating of glycine-Mg3Al LDHs and its intercalation compounding with montmorillonite[J]. Chin. J. Mater. Res., 2014, 28(2): 100
|
16 |
马小茜, 周景龙, 卢 楠 等. 甘氨酸-Mg3Al水滑石的制备、剥离以及与蒙脱土的插层组装[J]. 材料研究学报, 2014, 28(2): 100
doi: 10.11901/1005.3093.2013.372
|
17 |
Wang J, Gao F, Du X, et al. A high-performance electroactive PPy/rGO/NiCo-LDH hybrid film for removal of dilute dodecyl sulfonate ions[J]. Electrochim. Acta, 2020, 331: 135288
|
18 |
Zhao W H, Liu T T, Wu N D, et al. Bimetallic electron-induced phase transformation of CoNi LDH-GO for high oxygen evolution and supercapacitor performance[J]. Sci. China Mater., 2023, 66(2): 577
|
19 |
Tan S R, Yao Z, Liu Z C, et al. Fabrication and supercapacitor performance of metal organic framework Zn-BTC/rGO nanocomposites with different morphologies[J]. Chin. J. Mater. Res., 2024, 38 (8): 576
|
19 |
谭上荣, 姚 焯, 刘泽辰 等. 金属有机骨架Zn-BTC/rGO复合材料的制备和性能[J]. 材料研究学报, 2024, 38 (8): 576
doi: 10.11901/1005.3093.2023.446
|
20 |
Zhu Y, An S, Sun X, et al. Core-branched NiCo2S4@CoNi-LDH heterostructure as advanced electrode with superior energy storage performance[J]. Chem. Eng. J., 2020, 383: 123206
|
21 |
Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors[J]. J. Mater. Chem. A, 2018, 6(31): 15040
|
22 |
Ma P, Zhu J, Du X, et al. Specific separation and recovery of phosphate anions by a novel NiFe-LDH/rGO hybrid film based on electroactivity-variable valence[J]. J. Colloid Interface Sci., 2022, 626: 47
|
23 |
Liang H, Lin J, Jia H, et al. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. J. Power Sources, 2018, 378: 248
|
24 |
Wang X L, Zhang D, Shi X M, et al. Preparation by Co metal-organic framework template and capacitive properties of NiCo-layered double hydroxide/nickel foam composites[J]. Chin. J. Inorg. Chem., 2023, 39(4): 607
|
24 |
王晓亮, 张 多, 石雪梅 等. Co金属有机骨架模板制备NiCo水滑石/泡沫镍复合材料及电容性能[J]. 无机化学学报, 2023, 39(4): 607
|
25 |
Youmbi B S, Pelisson C H, Denicourt-Nowicki A, et al. Impact of the charge transfer process on the Fe2+/Fe3+ distribution at Fe3O4 magnetic surface induced by deposited Pd clusters[J]. Surf. Sci., 2021, 712: 121879
|
26 |
Yang Y Y, Li Y G, Zhu X W, et al. Potential induced reversible removal/recovery of phosphate anions with high selectivity using an electroactive NiCo-layered double oxide film[J]. J. Inorg. Mater., 2021, 36(3): 292
doi: 10.15541/jim20200340
|
26 |
杨言言, 李永国, 祝小雯 等. 电活性镍钴双金属氧化物高选择性去除/回收水中磷酸盐离子[J]. 无机材料学报, 2021, 36(3): 292
doi: 10.15541/jim20200340
|
27 |
Sun B, Hao X G, Wang Z D, et al. Separation of low concentration of cesium ion from wastewater by electrochemically switched ion exchange method: Experimental adsorption kinetics analysis[J]. J. Hazard. Mater., 2012, 233: 177
|
28 |
Yang Y Y, Du X, Abudula A, et al. Highly efficient defluoridation using a porous MWCNT@NiMn-LDH composites based on ion transport of EDL coupled with ligand exchange mechanism[J]. Sep. Purif. Technol., 2019, 223: 154
|
29 |
Cai J, Zhang Y, Pan B, et al. Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger[J]. Water Res., 2016, 102: 109
doi: S0043-1354(16)30468-7
pmid: 27337346
|
30 |
Du X, Sun X, Zhang H, et al. A facile potential-induced in-situ ion removal trick: fabrication of high-selective ion-imprinted film for trivalent yttrium ion separation[J]. Electrochim. Acta, 2015, 176: 1313
|
31 |
Li C, Chen N, Zhao Y, et al. Polypyrrole-grafted peanut shell biological carbon as a potential sorbent for fluoride removal: Sorption capability and mechanism[J]. Chemosphere, 2016, 163: 81
doi: S0045-6535(16)31033-5
pmid: 27521642
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|