Please wait a minute...
材料研究学报  2025, Vol. 39 Issue (7): 499-509    DOI: 10.11901/1005.3093.2024.426
  研究论文 本期目录 | 过刊浏览 |
稀土离子掺杂硅藻负极材料的制备及其电化学性能
孙世贸1, 刘红昌1,2(), 刘宏伟1,2, 王军1,2, 商晨楷1
1.中南大学资源加工与生物工程学院 长沙 410083
2.中南大学 生物冶金教育部重点实验室 长沙 410083
Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials
SUN Shimao1, LIU Hongchang1,2(), LIU Hongwei1,2, WANG Jun1,2, SHANG Chenkai1
1.School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
2.Key Lab of Biometallurgy of Ministry of Education, Central South University, Changsha 410083, China
引用本文:

孙世贸, 刘红昌, 刘宏伟, 王军, 商晨楷. 稀土离子掺杂硅藻负极材料的制备及其电化学性能[J]. 材料研究学报, 2025, 39(7): 499-509.
Shimao SUN, Hongchang LIU, Hongwei LIU, Jun WANG, Chenkai SHANG. Preparation and Electrochemical Properties of Rare Earth Ion Doped Diatom Anode Materials[J]. Chinese Journal of Materials Research, 2025, 39(7): 499-509.

全文: PDF(20538 KB)   HTML
摘要: 

将用离子型稀土矿制备的提取液添加到硅藻培养基中制备了硅藻。结果表明,浓度过高的稀土提取液抑制硅藻的生长。添加适量的稀土提取液培养硅藻,制备出由稀土离子修饰的硅藻壳体,即可用于制作锂离子电池的稀土离子掺杂硅藻负极材料。硅藻壳体的天然中空多孔结构能为SiO2的体积应变提供足够的缓冲空间,稀土离子的掺杂降低了硅藻壳体负极的电化学阻抗,使硅藻壳体负极的长循环性能和倍率性能显著提高。稀土提取液添加量为10 mL/L制备的硅藻壳体负极(DBS@C-REE-10)循环150圈后的放电比容量为879 mAh·g-1,远高于未经稀土离子修饰的硅藻负极的性能。

关键词 复合材料锂离子电池负极材料稀土离子硅藻    
Abstract

Diatoms were prepared by adding extraction solution prepared from ionic rare earth ores to diatom culture media. The results indicate that high concentrations of rare earth extraction solution inhibited the growth of diatoms. An appropriate amount of rare earth extraction solution was added to cultivate diatoms, and diatom frustules modified with rare earth ions were used as rare earth ion doped diatom anode materials for lithium-ion batteries. The natural hollow porous structure of diatom frustules provided enough buffering space for the volumetric strain of SiO2. The doping of rare earth ions reduced the electrochemical impedance of the anode electrode of diatom frustules, significantly improving its long cycle and rate performance. The specific discharge capacity of the diatom frustule anode (DBS@C-REE-10) prepared with 10 mL/L rare earth extract after 150 cycles was 879 mAh·g-1, which was much greater than that of the diatom anode without rare earth ion modification.

Key wordscomposite    lithium-ion battery    anode material    rare earth ions    diatoms
收稿日期: 2024-10-16     
ZTFLH:  TQ152  
基金资助:国家重点研发计划(2022YFC2105300)
通讯作者: 刘红昌,副教授,hchliu2050@csu.edu.cn,研究方向为资源、环境和能源生物技术
Corresponding author: LIU Hongchang, Tel: 15874293360, E-mail: hchliu2050@csu.edu.cn
作者简介: 孙世贸,男,2000年生,硕士
图1  稀土提取液添加量不同的硅藻生长和溶液理化参数
图2  稀土含量不同的稀土离子掺杂的硅藻负极材料的XRD谱和TG曲线
SampleH2OCSiO2
DBS@C6.9723.0569.98
DBS@C-REE-2.55.8621.9172..83
DBS@C-REE-53.8921.0175.10
DBS@C-REE-100.9319.2879.79
表1  不同稀土含量的稀土离子掺杂的硅藻负极材料的成分
图3  稀土含量不同的稀土离子掺杂的硅藻负极材料的透射电镜和高分辨透射电镜图像
图4  稀土含量不同的稀土离子掺杂的硅藻负极材料的扫描电镜照片和EDS映射谱
图5  稀土含量不同的稀土离子掺杂的硅藻负极材料的Raman光谱
图6  稀土提取液添加量不同的硅藻壳体负极的电化学性能
Sample0.1 A·g-10.2 A·g-10.5 A·g-11 A·g-12 A·g-1
DBS@C211.9143.388.358.133.7
DBS@C-REE-2.5266.6242.5204.5114.5145.7
DBS@C-REE-5321.1290.2245.6139.8174.6
DBS@C-REE-10348.1316.9269.7162.1199.6
表2  稀土提取液添加量不同的硅藻壳体负极的倍率
图7  稀土含量不同稀土离子掺杂的硅藻负极材料的交流阻抗和赝电容
SampleσDLi+ / cm2·s-1
DBS@C466.22.17 × 10-15
DBS@C-REE-2.5377.83.30 × 10-15
DBS@C-REE-5349.13.86 × 10-15
DBS@C-REE-10331.64.28 × 10-15
表3  DBS@C-REE电极材料的Warburg因子和Li+扩散系数
[1] Thackeray M M, Wolverton C, Isaacs E D. Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries [J]. Energy Environ. Sci., 2012, 5(7): 7854
[2] Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? [J]. Science, 2014, 343(6176): 1210
[3] Simon P, Gogotsi Y. Materials for electrochemical capacitors [J]. Nat. Mater., 2008, 7(11): 845
doi: 10.1038/nmat2297 pmid: 18956000
[4] Jin Y, Zhu B, Lu Z D, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery [J]. Adv. Energy Mater., 2017, 7(23): 1700715
[5] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries [J]. Chem. Mater., 2010, 22(3): 587
[6] Norberg A N, Wagner N P, Kaland H, et al. Silica from diatom frustules as anode material for Li-ion batteries [J]. RSC Adv., 2019, 9(70): 41228
doi: 10.1039/c9ra07271c
[7] Wang Z, Zhao J K, Liu S T, et al. Cultured diatoms suitable for the advanced anode of lithium ion batteries [J]. ACS Sustain. Chem. Eng., 2021, 9(2): 844
[8] Chen Y X, Liu H C, Xie W Q, et al. Diatom frustules decorated with Co nanoparticles for the advanced anode of Li-ion batteries [J]. Small, 2023, 19(30): 2300707
[9] Chen Y X, Liu H C, Shen Z, et al. Developing a novel lithium-ion battery anode material via thiol functionalization of diatom frustules plus Ag modification [J]. Iscience, 2024, 27(2): 108850
[10] Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414(6861): 359
[11] Liu Z H, Yu Q, Zhao Y L, et al. Silicon oxides: a promising family of anode materials for lithium-ion batteries [J]. Chem. Soc. Rev., 2019, 48(1): 285
doi: 10.1039/c8cs00441b pmid: 30457132
[12] Zhao H Y, Xia J L, Yin D D, et al. Rare earth incorporated electrode materials for advanced energy storage [J]. Coord. Chem. Rev., 2019, 390: 32
[13] Massari S, Ruberti M. Rare earth elements as critical raw materials: Focus on international markets and future strategies [J]. Resour. Policy, 2013, 38(1): 36
[14] Primo A, Marino T, Corma A, et al. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nano-particulate CeO2 obtained by a biopolymer templating method [J]. J. Am. Chem. Soc., 2012, 134(3): 1892
[15] Chen K F, Xue D F. Rare earth and transitional metal colloidal supercapacitors [J]. Sci. China Technol. Sci., 2015, 58(11): 1768
[16] Henao J, Martinez-Gomez L. Review: on rare-earth perovskite-type negative electrodes in nickel-hydride (Ni/H) secondary batteries [J]. Mater. Renew. Sustain., 2017, 6(2): 7
[17] Ghosh P, Mahanty S, Basu R N. Lanthanum-doped LiCoO2 cathode with high rate capability [J]. Electrochim. Acta, 2009, 54(5): 1654
[18] Luo S H, Tian Y, Li H, et al. Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries [J]. J. Rare Earths, 2010, 28(3): 439
[19] Zhang Q Y, Zhou J, Zeng G C, et al. Effect of lanthanum and yttrium doped LiFePO4 cathodes on electrochemical performance of lithium-ion battery [J]. J. Mater. Sci., 2023, 58(20): 8463
[20] Ning F H, Xu B, Shi J, et al. Structural, electronic, and Li migration properties of RE-doped (RE = Ce, La) LiCoO2 for Li-ion batteries: a first-principles investigation [J]. J. Phys. Chem., 2016, 120C(33) : 18428
[21] Wang J W, Sun X L, Xu L L, et al. Organic-rare earth hybrid anode with superior cyclability for lithium ion battery [J]. Adv. Mater. Interfaces, 2020, 7(9): 1902168
[22] Zheng X Y, Yang C K, Chang X H, et al. Synergism of rare earth trihydrides and graphite in lithium storage: Evidence of hydrogen-enhanced lithiation [J]. Adv. Mater., 2018, 30(3): 1704353
[23] Yin D D, Zhao H Y, Li N, et al. Enhancing the rate capability of niobium oxide electrode through rare-earth doping engineering [J]. Batteries Supercaps, 2019, 2(11): 924
[24] Xia J L, Zhao H Y, Pang W K, et al. Lanthanide doping induced electrochemical enhancement of Na2Ti3O7 anodes for sodium-ion batteries [J]. Chem. Sci., 2018, 9(14): 3421
[25] Wang J W, Zhou B, Zhao H Y, et al. A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium-sulfur batteries [J]. Mater. Chem. Front., 2019, 3(7): 1317
[26] Wang J W, Sun X L, Zhao H Y, et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping [J]. J. Phys. Chem., 2019, 123C(37) : 22735
[27] Zhao H Y, Xu J, Yin D D, et al. Electrolytes for batteries with earth-abundant metal anodes [J]. Chem-A Eur. J., 2018, 24(69): 18220
[28] Rodea-Palomares I, Boltes K, Fernández-Piñas F, et al. Physicochemical characterization and ecotoxicological assessment of CeO2 nanoparticles using two aquatic microorganisms [J]. Toxicolog. Sci., 2011, 119(1): 135
[29] Chen J J, Chen J X. Formation and thermal stability of dual glass phases in the h-BN/SiO2/Yb-Si-Al-O composites [J]. J. Eur. Ceram. Soc., 2020, 40(2): 456
[30] Sun Q, Zhang B, Fu Z W. Lithium electrochemistry of SiO2 thin film electrode for lithium-ion batteries [J]. Appl. Surf. Sci., 2008, 254(13): 3774
[31] Chang W S, Park C M, Kim J H, et al. Quartz (SiO2): A new energy storage anode material for Li-ion batteries [J]. Energy Environ. Sci., 2012, 5(5): 6895
[1] 刘恩典, 白玉, 李嘉文, 郝海. 双连续互穿铝基多孔复合材料的制备和热处理强化[J]. 材料研究学报, 2025, 39(7): 481-488.
[2] 陈昱溟, 朱晓勇, 谭晓月, 刘家琴, 吴玉程. 面向等离子体第一壁W-Y2O3 复合材料的力学性能[J]. 材料研究学报, 2025, 39(7): 510-520.
[3] 马雪娥, 胡美凤, 宋雪丽, 常玥, 查飞. 坡缕石负载Zn-In LDO/ZnS/In2S3 复合材料对甲基橙的光催化降解[J]. 材料研究学报, 2025, 39(6): 413-424.
[4] 杨言言, 刘堰, 杨颂, 汪紫彤, 朱峰, 余钟亮, 郝晓刚. 石墨烯掺杂的聚吡咯/钴镍双氢氧化物电控分离低浓度磷酸盐的性能[J]. 材料研究学报, 2025, 39(6): 425-434.
[5] 胡勇, 路世峰, 杨滔, 潘春旺, 刘林成, 赵龙志, 唐延川, 刘德佳, 焦海涛. FeCoCrNiMn/6061铝基复合材料的组织性能[J]. 材料研究学报, 2025, 39(5): 353-361.
[6] 刘艳云, 王娜, 张志华, 白文, 刘云洁, 陈勇强, 李万喜, 李瑀. MOFs衍生C/LDH/rGO网状复合材料构筑高比容量水系锌离子电容器[J]. 材料研究学报, 2025, 39(5): 371-376.
[7] 李颖, 聂学童, 钱立国, 朱忆仁. Co3O4/ZnO@MG-C3Nx 催化剂的合成及其可见光降解亚甲基蓝的性能[J]. 材料研究学报, 2025, 39(4): 241-250.
[8] 张森晗, 王欢, 张家慷, 冯效迁, 张启俭, 赵永华. 改性HZSM-5/Cu-ZnO-Al2O3 催化剂用于二甲醚水蒸气重整制氢[J]. 材料研究学报, 2025, 39(4): 251-258.
[9] 孙波, 张天宇, 赵强强, 王函, 佟钰, 曾尤. MXene@碳纤维毡复合薄膜的电磁屏蔽性能[J]. 材料研究学报, 2025, 39(4): 289-295.
[10] 唐晨, 张耀宗, 王一凡, 刘超, 赵德润, 董鹏昊. α-Fe2O3/TiO2 光催化材料的制备及其降解苯酚的性能[J]. 材料研究学报, 2025, 39(3): 233-240.
[11] 于文静, 刘春忠, 张洪亮, 卢天倪, 王东, 李娜, 黄震威. SiC含量对SiCP/6092铝基复合材料微弧氧化膜耐蚀性的影响[J]. 材料研究学报, 2025, 39(2): 153-160.
[12] 包秀坤, 史桂梅. NiCo@C(N)/NC纳米复合物的制备及其吸波性能[J]. 材料研究学报, 2025, 39(2): 126-136.
[13] 崔思凯, 付广艳, 林立海, 颜雨坤, 李处森. 碳化硅吸波材料的原位反应法制备及其机理[J]. 材料研究学报, 2024, 38(9): 659-668.
[14] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[15] 张恒宇, 黄照单, 段体岗, 温青, 李若灿, 吴厚燃, 马力, 张海兵. 碳基Pt@Co多层次复合催化阴极海水介质电催化氧还原行为研究[J]. 材料研究学报, 2024, 38(8): 632-640.