材料研究学报, 2024, 38(8): 585-592 DOI: 10.11901/1005.3093.2024.033

研究论文

DA-PEI共沉积表面改性阳离子交换膜的制备

周键,1,2, 夏蒙玥1,2, 张航飞1,2, 刘俏君1,2

1.兰州交通大学环境与市政工程学院 兰州 730070

2.寒旱地区水资源综合利用教育部工程研究中心 兰州 730070

Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane

ZHOU Jian,1,2, XIA Mengyue1,2, ZHANG Hangfei1,2, LIU Qiaojun1,2

1.College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2.Ministry of Education Engineering Research Center of Water Resource Comprehensive Utilization in Cold and Arid Regions, Lanzhou 730070, China

通讯作者: 周键,副教授,zhoujian@mail.lzjtu.cn,研究方向为水处理功能材料制备

收稿日期: 2024-01-11   修回日期: 2024-02-18  

基金资助: 国家自然科学基金(52364055)
甘肃省教育厅:高校科研创新平台重大培育项目(2024CXPT-14)
兰州交通大学“天佑青年托举人才计划”基金

Corresponding authors: ZHOU Jian, Tel:(0931)4956083, E-mail:zhoujian@mail.lzjtu.cn

Received: 2024-01-11   Revised: 2024-02-18  

Fund supported: National Natural Science Foundation of China(52364055)
Gansu Provincial Department of Education: Major Cultivation Project of University Scientific Research Innovation Platform(2024CXPT-14)
Tianyou Youth Talent Lift Program of Lanzhou Jiaotong University

作者简介 About authors

周 键,男,1984年生,博士

摘要

基于贻贝仿生粘合剂多巴胺(Dopamine,DA)和聚乙烯亚胺(Polyethyleneimine,PEI)共沉积制备了阳离子交换膜并使用红外光谱仪、扫描电子显微镜和紫外可见分光光度计等手段表征其性能,研究了DA与PEI浓度比对改性膜性能的影响。结果表明,随着PEI浓度的提高改性膜的选择透过性和膜电阻呈先增加后降低趋势,而改性膜的氧化百分比呈先下降后提高的趋势。DA与PEI浓度比为1∶1的改性膜其氧化百分比和膜电阻较低,含水率和离子交换容量分别为48.68%和2.49 mmol/g,选择透过性高达97.8%,比原膜提高了8.08%。

关键词: 有机高分子材料; 离子交换膜; 共沉积; 高选择透过性

Abstract

The cation exchange membrane was prepared by co-deposition of Dopamine (DA) and Polyethyleneimine (PEI) based on mussel bionic binders, and its properties were characterized by infrared spectrometer, scanning electron microscope, and UV visible spectrophotometer. The effect of DA to PEI concentration ratio on the performance of the modified membrane was studied. The results showed that with the increase of PEI concentration, the selective permeability and membrane resistance increased first and then decreased, while the oxidation percentage of the modified membrane decreased first and then increased. When the concentration ratio of DA to PEI was 1:1, the modified membrane had lower oxidation percentage and membrane resistance. Accordingly, the water content and ion exchange capacity were 48.68% and 2.49 mmol/g, respectively, and the selective permeability was up to 97.8%, that is 8.08% superior to the original membrane.

Keywords: organic polymer materials; ion exchange membrane; co-deposition; high selective permeability

PDF (21205KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周键, 夏蒙玥, 张航飞, 刘俏君. DA-PEI共沉积表面改性阳离子交换膜的制备[J]. 材料研究学报, 2024, 38(8): 585-592 DOI:10.11901/1005.3093.2024.033

ZHOU Jian, XIA Mengyue, ZHANG Hangfei, LIU Qiaojun. Preparation of Dopamine and Polyethyleneimine Co-deposition Modified Cation Exchange Membrane[J]. Chinese Journal of Materials Research, 2024, 38(8): 585-592 DOI:10.11901/1005.3093.2024.033

离子交换膜是膜电解、电渗析、扩散渗析等膜分离技术的核心部件,利用其对阴/阳离子选择透过能力的不同可实现不同组分的分离、提纯、浓缩,广泛应用于海水淡化、电解水制氢、燃料电池以及有色金属回收等方面[1,2]。使用双膜三室电解法电沉积回收钴,含氧化剂的酸性环境对阳离子交换膜的抗氧化性和选择透过性要求较高[3,4]。传统阳离子交换膜(阳膜)的耐污染性低、选择透过性差,使其使用寿命和分离效率降低、成本和能耗提高[5]。为了提高阳膜的性能需将其改性,有掺混改性[6]和表面改性等方法[7]。表面改性,是在成品膜的基础上借助化学沉积、辐射或等离子体聚合等技术修饰膜表面,增加膜表面的功能基团或在阳膜表面生成改性层以提高其分离性能[8]。但是,采用表面改性制备的阳膜,其改性层不稳定和容易脱落[9]

贻贝分泌的贻贝黏附蛋白能通过原位交联或硬化反应形成坚固的防水层,受到了极大的关注[10]。多巴胺(DA)能牢固地粘附在各种无机和有机材料上,因为DA中的儿茶酚和胺基官能团能模拟贻贝的粘附性并能在碱性溶液和氧气环境中发生自聚反应[11]。但是,DA在阳膜表面自聚合和沉积需要8~12 h甚至更长时间才能生成聚多巴胺(PDA)涂层[12]。同时,PDA长期沉积容易通过非共价键形成较大的聚集体而使阳膜的表面粗糙[13]。因此,较快地生成具有结构均匀性和界面亲水性的PDA表面层仍然较为困难。引入FeCl3[14]、CuSO4/H2O[15]和(NH4)2S2O8[16]等氧化剂,能较快地生成均匀的PDA层。氧化系统(如CuSO4/H2O2体系)能在碱性介质中产生活性氧(如羟基自由基),在DA聚合和随后PDA涂层的生成中起关键作用[17]。同时,Michael加成和Schiff碱反应使PDA易与聚乙烯亚胺(PEI)发生共价交联。引入PEI可使改性层更均匀,因为PEI能干扰PDA中非共价作用产生的聚集[18]。WANG[19]等进行CuSO4/H2O2的催化氧化在膜表面较快地生成了均匀的PDA-PEI层,但是这类芬顿反应的共沉积过程难以精确调控。CAO[20]等进行反向电沉积在膜表面交替构建4-苯乙烯磺酸钠和DA/PEI改性层,但是这个过程较为复杂且受电极反应的影响较大。本文以FeCl3为氧化剂沉积DA-PEI改性阳膜,研究DA与PEI的浓度比对其物化性能的影响。

1 实验方法

1.1 实验材料和仪器设备

实验材料:无水三氯化铁(FeCl3)、聚乙烯亚胺(PEI)、多巴胺(DA)、三(羟甲基)氨基甲烷(Tris);浓盐酸(HCl)、氯化钾(KCl)、氯化钠(NaCl)、30%过氧化氢(H2O2),均为分析纯。实验用水为纯水。商用阳膜的性能参数,列于表1

表1   商用阳膜的性能参数

Table 1  Performance parameters of commercial cation exchange membranes

Membrane typeThickness / mmMoisture content / %Ion exchange capacity / mol·kg-1Selective permeability / %Membrane resistance / Ω·cm2
IONSEP-MC-C0.42< 40> 2.4> 92< 10

新窗口打开| 下载CSV


仪器设备:VERTEX70型红外-拉曼光谱(FTIR),JSM6700F型扫描电子显微镜(SEM);DT-830型数字万用表;PGSTAT128N型Autolab电化学工作站;UV2600A型紫外可见分光光度计。

1.2 商用基膜的改性

(1) 将尺寸为5 cm × 5 cm的商用基膜浸在3%NaCl溶液中24 h,用纯水冲洗干净后置于浓度为0.001 mol/L的FeCl3溶液中,磁力搅拌1 h使Fe3+连接到磺酸官能团。

(2) 配制Tris-PEI溶液:分别向体积为100 mL浓度为100 mmol/L 的Tris溶液中加入0.05 g、0.1 g、0.2 g及0.4 g的PEI,调节溶液的pH值为8.5,然后加入0.2 g的DA得到不同DA与PEI浓度比的DA-PEI溶液。

(3) 将预处理后的商用基膜浸入DA-PEI溶液中,磁力搅拌30 min在阳膜表面生成PDA-PEI改性层。将原基膜命名为M0,将用DA单独改性的膜命名为M1,将引入PEI改性的膜按浓度从低到高依次命名为M2、M3、M4、M5。

1.3 膜样品性能的表征

分别用称重法和酸碱滴定法测定阳膜的含水率和离子交换容量[21]。用电化学工作站内嵌的交流阻抗-四电极体系测定阳膜的电阻[22]

测试阳膜的迁移数及选择透过性:(1) 将阳膜裁剪成尺寸为5 cm × 5 cm的样品,将其浸泡于0.15 mol/L KCl溶液中使其转变为K型膜。(2) 将阳膜夹入测试装置(图1)中,两侧的电极均为Ag-AgCl电极。(3)在A室和B室分别充满0.1 mol/L和0.2 mol/L KCl溶液,用数字万用表测量两电极间的电位。

图1

图1   测试装置的等效图

Fig.1   Equivalent diagram of the test device


阳膜的迁移数为

t+=Em2E0

式中t+ 为阳离子迁移数,Em为数字万用表读数(mV);E0 (取25℃时的16.08 mV)为0.1 mol/L与0.2 mol/L KCl溶液理论电位值。

阳膜的选择透过性为

P=t+-t1-t

式中P为阳膜选择透过性,t为无浓度变化时通过待测膜的迁移数[23]

测试阳膜的抗氧化性:(1) 剪裁表面没有针孔和裂纹的膜样品,使其尺寸为3 cm × 2 cm;将其表面用纯水洗净后置于温度为60℃的真空烘箱中24 h,取出后称其质量(记为M1)。(2) 将膜放入Fenton试剂中并置于温度为60℃的恒温水浴中72 h,用纯水洗净其表面后烘干至恒质量,将其记为M2。膜的抗氧化性为

ε=M2-M1M1

式中ε为膜的氧化百分比,M1为氧化前干膜的质量,M2为氧化后干膜的质量。

2 结果和讨论

2.1 DA-PEI共沉积改性阳膜的机理

为验证氧化剂在改性过程中的氧化作用,测定了不同改性剂氧化10 min后的紫外-可见光谱,如图2所示。在DA溶液的谱中420 nm处出现一个较弱的特征吸收峰,可归因于DA聚合成PDA后分子中的C=C-C=O结构[24,25]。在DA溶液中加入FeCl3,在Fe3+/DA溶液谱中的480 nm处出现一个很强吸收峰,表明FeCl3氧化剂可诱导DA氧化聚合。DA和Fe3+/DA溶液的紫外吸收带红移,可归结为Fe3+/DA溶液中产生了Fe3+-PDA螯合物[26,27]。在DA/PEI溶液的紫外-可见光谱中368 nm处出现一个较强的肩峰,与溶液中的C=C-C=N结构有关。在DA/PEI溶液中加入氧化剂,使Fe3+/DA-PEI溶液的谱中在368 nm处的吸光度增大,表明FeCl3可氧化加速共沉积反应[25]。保持DA浓度2 g/L不变且不加氧化剂,依次改变PEI浓度得到图3给出的紫外-可见光谱。可以看出,随着PEI浓度的提高谱中368 nm处的吸光度增大。这表明,改变PEI的浓度可调节多巴胺的聚合速率。DA-PEI共沉积的反应原理,如图4所示。

图2

图2   在不同条件下DA的紫外-可见光谱

Fig.2   UV-Vis spectra of DA under different conditions


图3

图3   不同DA与PEI浓度比溶液的紫外-可见光谱

Fig.3   UV-Vis spectra of solutions with different concentration ratios of DA and PEI


图4

图4   DA-PEI共沉积反应的原理图

Fig.4   Schematic diagram of DA-PEI co-deposition reaction


2.2 DA-PEI共沉积改性膜的含水率和离子交换容量

图5表明,无PEI参与的改性膜其含水率均比有PEI参与的小(仅为47.51%)。其原因是,PDA与PEI共价交联产物中的亲水基团使改性膜的亲水性进一步提高[28]。浓度比小于1∶1的膜含水率下降,可归因于高浓度PEI增大了改性剂之间的静电作用,影响了DA自聚过程中的交联结构[29],改性层不能附着在膜表面使其亲水性和含水率降低。

图5

图5   不同DA与PEI浓度比对改性膜含水率和离子交换容量的影响

Fig.5   Influence of different concentration ratios of DA and PEI on water content and ion exchange capacity


PEI的浓度提高,使离子交换容量呈现先上升后下降的趋势。浓度比为1∶1的膜离子交换容量最高。其原因是,随着PEI含量的提高阳膜表面沉积的改性层增加,DA中丰富的酚羟基增加了可交换基团的数量,使荷电密度和离子交换容量提高。但是低于1∶1的浓度比使DA与PEI聚合沉积效果较差和改性层疏松,从而使阳膜的离子交换容量降低[29]

2.3 DA-PEI共沉积改性膜的迁移数和选择透过性

图6给出了DA与PEI浓度比与改性膜的选择透过性和迁移数的关系。可以看出,随着PEI浓度的提高改性膜的选择透过性先提高后降低、迁移数先增大后减小。与DA单独改性相比,加入PEI改性的膜其迁移数增大、选择透过性提高。DA与PEI浓度比为1∶1的膜,阳离子迁移数和选择透过性分别为98.88%和97.8%。其原因是:首先,DA中的酚羟基荷负电有利于阳离子的传输迁移[30];改性后膜表面的固定荷电基团增加,静电排斥作用增大了对同离子的阻挡能力,进而使阳离子迁移数增多。其次,改性层封堵了阳膜表面的大孔,从而减少了同离子的泄漏和提高了反离子的选择透过能力[31]

图6

图6   DA与PEI浓度比对改性膜迁移数和选择透过性的影响

Fig.6   Effects of different concentration ratios of DA and PEI on migration number and selective permeability


2.4 DA-PEI共沉积改性膜的膜电阻和抗氧化性

图7给出了改性膜的电阻和不同DA与PEI浓度比的抗氧化性。可以看出,无PEI参与改性的膜电阻均比有PEI参与的小。这表明,Fe3+能促进DA聚合并与PEI生成交联改性层沉积在膜表面,使膜电阻略有增大。随着PEI浓度的提高膜电阻先升高后减小,浓度比为2∶1的膜电阻达到最大值。其原因是,膜电阻与膜表面形貌和沉积改性层的附着效果密切相关。改性膜表面的沉积产物分布越均匀和致密度越高,则膜电阻越小。膜表面有较多的聚集体和较高的粗糙程度,严重阻碍离子跨膜迁移。上述结果,对应膜表面形貌的变化(图8)。

图7

图7   DA与PEI浓度比对改性膜抗氧化性和膜电阻的影响

Fig.7   Effects of different concentration ratios of DA and PEI on oxidation resistance and membrane resistance


图8

图8   原膜和不同浓度比的改性膜的SEM照片

Fig.8   SEM images of original membrane and modified membrane with different concentration ratio (a) M0, (b) M1, (c) M2, (d) M3, (e) M4 and (f) M5


图7可见,随着DA与PEI浓度比的降低改性膜的氧化百分比呈先降低后提高的趋势,浓度比例为1∶1的膜其氧化稳定性最高。其原因是:DA-PEI共沉积改性在膜表面生成一层致密的保护层,使H2O2分子和氧化自由基不能进入膜内且反应产物不易氧化,提高膜的抗氧化性能[29]。同时,改性膜较高的含水率也使其抗氧化性能提高(图5)。PEI的浓度过高使DA自聚过程变得困难,于是使PDA-PEI沉积效果欠佳,降低了改性膜的抗氧化性能。

2.5 DA-PEI共沉积改性膜的表面形貌

图8给出了原膜和用不同浓度的改性剂处理30 min后改性膜的表面形貌。可以看出,原膜的表面较为平整,而DA单独改性的膜表面黏附少量的纳米级球形聚集体。这表明,在Fe3+的作用下DA沉积聚合生成PDA,PDA的非共价作用产生的团聚效应使膜的表面更加粗糙。PEI的引入,使球形团块转变为PDA和PEI聚集体(图8c、8d)。其原因是,具有亲水性胺基基团的PEI分子通过Michael加成或Schiff碱反应与PDA交联,使其聚集产生更多的分支结构[32,33]。继续提高PEI浓度,则改性膜表面出现峰谷形貌(图8e),沉积物颗粒在膜表面的分布更加均匀。这表明,改变PEI的浓度可调控膜表面形貌,从而改变膜的选择透过性。

2.6 DA-PEI共沉积改性膜面元素的含量和分布

表2图9给出了原膜和改性膜表面元素的含量和分布。由表2可见,原膜表面主要含有 C 元素和少量的O元素,可能与制作膜时添加的化学原料有关[34]。原膜经过DA-PEI改性后,可以看出C、O、N元素在改性膜表面存在,表明改性剂成功的附着在膜表面,并且随着PEI浓度的变化,改性层的均匀度有所变化,表明适量浓度的PEI有利于DA和PEI在膜表面聚合沉积。

表2   原膜和改性膜表面元素的含量

Table 2  Content of elements on the surface of the original membrane and the modified membrane (mass fraction, %)

CON
M095.04.80
M194.75.00.2
M293.76.00.3
M392.96.40.6
M490.77.40.8
M594.35.40.3

新窗口打开| 下载CSV


图9

图9   原膜和改性膜的EDS元素面扫描图

Fig.9   EDS elemental surface scans of the original and modified membranes (a) M0, (b) M1, (c) M2, (d) M3, (e) M4 and (f) M5


2.7 DA-PEI共沉积改性膜表面的化学组成

图10给出了原膜和不同DA与PEI浓度比改性膜的傅里叶红外光谱,分析了膜表面的化学结构。可以看出,与商品膜相比,不同浓度比的改性膜在2960 cm-1处的振动峰均有所弱化。此峰是原膜中苯乙烯C-H的伸缩振动峰,它的弱化表明原膜表面的化学结构被覆盖,生成了改性层[25]。改性膜的红外光谱中1611 cm-1处出现新振动峰,表明PDA与PEI之间存在N—H键,在1435 cm-1处的振动峰强度有所提高,对应PDA结构中C=O键。这表明,随着PEI浓度的提高振动峰的强度随之提高[35~37]。这个结果证实,通过Schiff碱反应和Michael加成反应可在基膜表面沉积PDA-PEI改性层[38]

图10

图10   原膜和不同DA与PEI浓度比的改性膜的红外光谱

Fig.10   Original membrane and the modified membranes with different concentration ratios of DA and PEI


3 结论

(1) 在DA-PEI表面共沉积改性阳膜,使用FeCl3氧化剂可加速改性层的生成。

(2) 随着PEI浓度的提高,改性膜表面逐渐形成聚集体形貌;改性膜的氧化百分比先降低后提高;改性膜的含水率、离子交换容量、选择透过性和膜电阻均呈先增加后降低趋势。

(3) DA与PEI浓度比为1∶1的改性膜选择透过性高达97.8%、抗氧化能力较高、膜电阻略比原膜的电阻高。

参考文献

Dong S.

Preparation of NASICON-structured NaTi2(PO4)3 material and device assembly and reduction/recovery of trace reducible metal ions in water

[D]. Jinan: Shandong University, 2021

[本文引用: 1]

董 顺.

NASICON型NaTi2(PO4)3材料的制备、器件组装及其对水体中微量可还原金属离子的还原回收

[D]. 济南: 山东大学, 2021

[本文引用: 1]

Campione A, Cipollina A, Bogle I D L, et al.

A hierarchical model for novel schemes of electrodialysis desalination

[J]. Desalination, 2019, 465: 79

DOI      [本文引用: 1]

A new hierarchical model for the electrodialysis (ED) process is presented. The model has been implemented into gPROMs Modelbuilder (PSE), allowing the development of a distributed-parameters simulation tool that combines the effectiveness of a semi-empirical modelling approach to the flexibility of a layered arrangement of modelling scales. Thanks to its structure, the tool makes possible the simulation of many different and complex layouts, requiring only membrane properties as input parameters (e.g. membrane resistance or salt and water permeability). The model has been validated against original experimental data obtained from a lab scale ED test rig. Simulation results concerning a 4-stage treatment of seawater and dynamic batch operations of brackish water desalination are presented, showing how the model can be effectively used for predictive purposes and for providing useful insights on design and optimisation.

Zhou J, Wang S F, Song X S.

Electrodeposition of cobalt in double-membrane three-compartment electrolytic reactor

[J]. Trans. Nonferrous Met. Soc. China, 2016, 26(6): 1706

[本文引用: 1]

Zhou J, Wang S F, Song X S, et al.

Ion transport for electrodeposition of cobalt in double-membrane three-compartment electrolytic cell

[J]. Chin. J. Nonferrous Met., 2016, 26(11): 2426

[本文引用: 1]

周 键, 王三反, 宋小三 .

双膜三室电解槽中电沉积钴的离子传输

[J]. 中国有色金属学报, 2016, 26(11): 2426

[本文引用: 1]

Rana D, Matsuura T.

Surface modifications for antifouling membranes

[J]. Chem. Rev., 2010, 110(4): 2448

DOI      PMID      [本文引用: 1]

Bao L R, Xu Z G, Guo W, et al.

Enhancement of lithium extraction from low grade brines by highly hydrophilic blend membranes using MnO2 ion sieve as adsorbents

[J]. Colloids Surf., 2023, 674A: 131884

[本文引用: 1]

Mu Y X, Wang S F, Wang T, et al.

Progress in the modification of ion-exchange membranes

[J]. Membr. Sci. Technol., 2013, 33(6): 119

[本文引用: 1]

穆永信, 王三反, 王 挺 .

离子交换膜改性的研究进展

[J]. 膜科学与技术, 2013, 33(6): 119

[本文引用: 1]

Li J, Xu Y Q, Ruan H M, et al.

Monovalent cation selective membranes: state and development perspective

[J]. Membr. Sci. Tech., 2015, 35(3): 113

[本文引用: 1]

李 健, 徐燕青, 阮慧敏 .

单价选择性阳离子交换膜的研究进展

[J]. 膜科学与技术, 2015, 35(3): 113

[本文引用: 1]

Khoiruddin, Ariono D, Subagjo, et al.

Surface modification of ion-exchange membranes: methods, characteristics, and performan-ce

[J]. J. Appl. Polym. Sci., 2017, 134(48): 45540

[本文引用: 1]

Li B, Liu W P, Jiang Z Y, et al.

Ultrathin and stable active layer of dense composite membrane enabled by poly(dopamine)

[J]. Langmuir, 2009, 25(13): 7368

DOI      PMID      [本文引用: 1]

We demonstrate that dopamine is able to self-polymerize and adhere firmly onto the substrate, which can create a hierarchical structure comprising an ultrathin active layer and a porous support layer. Such an approach opens a novel way to fabricating highly efficient and stable composite materials including composite membranes. More specifically, in this study the composite membranes are fabricated by simply dipping microporous substrate in aqueous dopamine solution under mild conditions. Nanoindentation measurement reveals the tight adhesion of dopamine onto microporous substrate, which is ascribed to numerous pi-pi and hydrogen-bonding interactions. The chemical composition of the active layer is analyzed by XPS, which demonstrates the self-polymerization of dopamine. The water contact angle of the dopamine coated membranes is reduced remarkably compared with that of the uncoated counterpart. Stylus profiler measurements display that the poly(dopamine) thickness increases as the coating time increases. FESEM images of the membranes' cross section show that an active layer (<100 nm) is deposited on the porous polysulfone (PS) substrate. Positron annihilation spectroscopy (PAS) is introduced to probe the fractional free volume properties throughout the cross section of the composite membranes and reveal that after dopamine double-coating the active layer becomes thicker and more compact. Moreover, pH and concentration of the dopamine solution exert notable influence on the fractional free volume of the composite membranes. The as-prepared membranes are tentatively employed for pervaporative desulfurization and exhibits satisfying separation performance as well as durability. This facile, versatile, and efficient approach enables a promising prospect for the wide applications of such novel kinds of ultrathin composite materials.

Lee H, Dellatore S M, Miller W M, et al.

Mussel-inspired surface chemistry for multifunctional coatings

[J]. Science, 2007, 318(5849): 426

DOI      PMID      [本文引用: 1]

We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals, oxides, polymers, semiconductors, and ceramics. Secondary reactions can be used to create a variety of ad-layers, including self-assembled monolayers through deposition of long-chain molecular building blocks, metal films by electroless metallization, and bioinert and bioactive surfaces via grafting of macromolecules.

Bernsmann F, Ball V, Addiego F, et al.

Dopamine-melanin film deposition depends on the used oxidant and buffer solution

[J]. Langmuir, 2011, 27(6): 2819

DOI      PMID      [本文引用: 1]

The deposition of "polydopamine" films, from an aqueous solution containing dopamine or other catecholamines, constitutes a new and versatile way to functionalize solid-liquid interfaces. Indeed such films can be deposited on almost all kinds of materials. Their deposition kinetics does not depend markedly on the surface chemistry of the substrate, and the films can reach thickness of a few tens of nanometers in a single reaction step. Up to now, even if a lot is known about the oxidation mechanism of dopamine in solution, only little information is available to describe the deposition mechanism on surfaces either by oxidation in solution or by electrodeposition. The deposition kinetics of melanin was only investigated from dopamine solutions using oxygen or ammonium persulfate as an oxidant and from a tris(hydroxymethyl) aminomethane (Tris) containing buffer solutions at pH 8.5. Many other oxidants could be used, and the buffer agent containing a primary amine group may influence the deposition process. Herein we show that the deposition kinetics of melanin from dopamine containing buffers at pH 8.5 can be markedly modified using Cu(2+) instead of O2 as an oxidant: the deposition kinetics remains linear up to thicknesses of more than 70 nm, whereas the film growth stops at 45 ± 5 nm in the presence of 02. In addition, the films prepared from Cu(2+) containing solutions display an absorption spectrum with defined peaks at 320 and 370 nm, which are absent in the spectra of films prepared in oxygenated solutions. The replacement of Tris buffer by phosphate buffer also has a marked effect on the melanin deposition kinetics.

Guo B B, Zhu C Y, Xu Z K.

Surface and interface engineering for advanced nanofiltration membranes

[J]. Chin. J. Polym. Sci., 2022, 40(2): 124

[本文引用: 1]

Zhao W R, Zhang W, Liu Y, et al.

Fe3+ ions induced rapid co-deposition of polydopamine-polyethyleneimine for monovalent selective cation exchange membrane fabrication

[J]. Sep. Purif. Technol., 2022, 300: 121802

[本文引用: 1]

Wang Z, Zhang W J, Wen S, et al.

Rapid co-deposition of dopamine and polyethyleneimine triggered by CuSO4/H2O2 oxidation to fabricate nanofiltration membranes with high selectivity and antifouling ability

[J]. Sep. Purif. Technol., 2023, 305: 122409

[本文引用: 1]

Wei Q, Zhang F L, Li J, et al.

Oxidant-induced dopamine polymerization for multifunctional coatings

[J]. Polym. Chem., 2010, 1(9): 1430

[本文引用: 1]

Du X, Li L X, Li J S, et al.

UV-triggered dopamine polymerization: control of polymerization, surface coating, and photopatterning

[J]. Adv. Mater., 2014, 26(47): 8029

[本文引用: 1]

Yang H C, Liao K J, Huang H, et al.

Mussel-inspired modification of a polymer membrane for ultra-high water permeability and oil-in-water emulsion separation

[J]. J. Mater. Chem., 2014, 2A(26) : 10225

[本文引用: 1]

Wang J, Zhu J Y, Tsehaye M T, et al.

High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine

[J]. J. Mater. Chem., 2017, 5A(28) : 14847

[本文引用: 1]

Cao R Q, Duan F, Xu Y, et al.

Composite modification of anion exchange membrane by in-situ layer-by-layer assembly to improve antifouling performance

[J]. J. Membr. Sci., 2024, 690: 122211

[本文引用: 1]

Chen R Y, Chen Z, Zheng X, et al.

Preparation and characterization of CoPc(COOH)8-SA/mCS bipolar membranes

[J]. Acta Phys.-Chim. Sin., 2009, 25(12): 2438

[本文引用: 1]

陈日耀, 陈 震, 郑 曦 .

CoPc(COOH)8-SA/mCS双极膜的制备及表征

[J]. 物理化学学报, 2009, 25(12): 2438

[本文引用: 1]

Galama A H, Hoog N A, Yntema D R.

Method for determining ion exchange membrane resistance for electrodialysis systems

[J]. Desalination, 2016, 380: 1

[本文引用: 1]

Zhang X M.

Preparation, characterization and application of cation exchange membranes based sulfonated PVDF

[D]. Lanzhou: Lanzhou Jiaotong University, 2019

[本文引用: 1]

张学敏.

PVDF磺化阳离子交换膜的制备、表征与应用研究

[D]. 兰州: 兰州交通大学, 2019

[本文引用: 1]

Zhang C, Ou Y, Lei W X, et al.

CuSO4/H2O2- induced rapid deposition of polydopamine coatings with high uniformity and enhanced stability

[J]. Angew. Chem. Int. Ed., 2016, 55(9): 3054

DOI      PMID      [本文引用: 1]

Mussel-inspired polydopamine (PDA) deposition offers a promising route to fabricate multifunctional coatings for various materials. However, PDA deposition is generally a time-consuming process, and PDA coatings are unstable in acidic and alkaline media, as well as in polar organic solvents. We report a strategy to realize the rapid deposition of PDA by using CuSO4/H2O2 as a trigger. Compared to the conventional processes, our strategy shows the fastest deposition rate reported to date, and the PDA coatings exhibit high uniformity and enhanced stability. Furthermore, the PDA-coated porous membranes have excellent hydrophilicity, anti-oxidant properties, and antibacterial performance. This work demonstrates a useful method for the environmentally friendly, cost-effective, and time-saving fabrication of PDA coatings.© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Zhao W R, Liu Y, Zhang W, et al.

Fe3+ ions induced rapid electrodeposition of polydopamine-polyethyleneimine for monovalent selective membrane fabrication

[J]. Chem. Ind. Eng. Prog., 2022, 42(3): 1508

[本文引用: 3]

赵王瑞, 刘 燕, 张 伟 .

Fe3+诱导聚多巴胺-聚乙烯亚胺电沉积制备单价选择性膜

[J]. 化工进展, 2022, 42(3): 1508

[本文引用: 3]

Wang Z, Xie Y J, Li Y W, et al.

Tunable, metal-loaded polydopamine nanoparticles analyzed by magnetometry

[J]. Chem. Mater., 2017, 29(19): 8195

[本文引用: 1]

Charkoudian L K, Franz K J.

Fe(III)-coordination properties of neuromelanin components: 5, 6-dihydroxyindole and 5, 6-dihydroxyindole-2-carboxylic acid

[J]. Inorg. Chem., 2006, 45(9): 3657

PMID      [本文引用: 1]

The Fe(III)-coordination chemistry of neuromelanin building-block compounds, 5,6-dihydroxyindole (DHI), 5,6-dihydroxyindole-2-carboxylic acid (DHICA), and 5,6-dihydroxy-N-methyl-indole (Me-DHI), and the neurotransmitter dopamine were explored in aqueous solution by anaerobic pH-dependent spectrophotometric titrations. The Fe(III)-binding constants and pH-dependent speciation parallel those of catechol in that mono, bis, and tris FeLx species are present at concentrations dependent on the pH. The bis FeL2 dihydroxyindole species are favorable for L = DHI and DHICA under neutral to mildly acidic conditions. DHI and DHICA are stronger Fe(III) chelates than catechol, dopamine, and Me-DHI at pH values from 3 to 10. Oxidation studies reveal that iron accelerates the air oxidation of DHI and DHICA.

Mulyati S, Takagi R, Fujii A, et al.

Simultaneous improvement of the monovalent anion selectivity and antifouling properties of an anion exchange membrane in an electrodialysis process, using polyelectrolyte multilayer deposition

[J]. J. Membr. Sci., 2013, 431: 113

[本文引用: 1]

Chen Z H.

Study on the modification and properties of polyethylene anion exchange membrane

[D]. Lanzhou: Lanzhou Jiaotong University, 2021

[本文引用: 3]

陈志华.

聚乙烯阴离子交换膜的改性及性能研究

[D]. 兰州: 兰州交通大学, 2021

[本文引用: 3]

Ball V, Gracio J, Vila M, et al.

Comparison of synthetic dopamine-eumelanin formed in the presence of oxygen and Cu2+ cations as oxidants

[J]. Langmuir, 2013, 29(41): 12754

[本文引用: 1]

Li Y H.

Preparation, characterization and application of organic-inorganic hybrid SiO2 cation exchange membranes

[D]. Lanzhou: Lanzhou Jiaotong University, 2020

[本文引用: 1]

李艳红.

有机-无机杂化SiO2阳离子交换膜的制备、表征与应用研究

[D]. 兰州: 兰州交通大学, 2020

[本文引用: 1]

Jiang J H, Zhu L P, Zhu L J, et al.

Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films

[J]. Langmuir, 2011, 27(23): 14180

DOI      PMID      [本文引用: 1]

This study aims to explore the fundamental surface characteristics of polydopamine (pDA)-coated hydrophobic polymer films. A poly(vinylidene fluoride) (PVDF) film was surface modified by dip coating in an aqueous solution of dopamine on the basis of its self-polymerization and strong adhesion feature. The self-polymerization and deposition rates of dopamine on film surfaces increased with increasing temperature as evaluated by both spectroscopic ellipsometry and scanning electronic microscopy (SEM). Changes in the surface morphologies of pDA-coated films as well as the size and shape of pDA particles in the solution were also investigated by SEM, atomic force microscopy (AFM), and transmission electron microscopy (TEM). The surface roughness and surface free energy of pDA-modified films were mainly affected by the reaction temperature and showed only a slight dependence on the reaction time and concentration of the dopamine solution. Additionally, three other typical hydrophobic polymer films of polytetrafluoroethylene (PTFE), poly(ethylene terephthalate) (PET), and polyimide (PI) were also modified by the same procedure. The lyophilicity (liquid affinity) and surface free energy of these polymer films were enhanced significantly after being coated with pDA, as were those of PVDF films. It is indicated that the deposition behavior of pDA is not strongly dependent on the nature of the substrates. This information provides us with not only a better understanding of biologically inspired surface chemistry for pDA coatings but also effective strategies for exploiting the properties of dopamine to create novel functional polymer materials.© 2011 American Chemical Society

Zhang N, Jiang B, Zhang L H, et al.

Low-pressure electroneutral loose nanofiltration membranes with polyphenol-inspired coatings for effective dye/divalent salt separation

[J]. Chem. Eng. J., 2019, 359: 1442

DOI      [本文引用: 1]

Low-pressure electroneutral loose nanofiltration (NF) membranes were facilely fabricated by co-deposition of polyphenol-inspired epigallocatechin gallate (EGCg) and polyethyleneimine (PEI) on polyethersulfone (PES) ultrafiltration substrates. The effects of PEI with different molecular weights on co-deposition behavior, morphologies, surface properties, as well as separation performance of the resultant membranes were investigated in detail. The results showed that with the increase of PEI molecular weight from 600 to 10,000, the co-deposition amount of EGCg/PEI on membrane surface decreased, while the EGCg/PEI selective layer became denser. As a result, the EGCg/PEI 600 co-deposited membrane, which possessed an electroneutral surface with the best hydrophilicity, exhibited the optimal separation performance among the co-deposited membranes in the context of textile wastewater treatment. It had the highest pure water permeability (19.0 L/(m(2).h.bar)) and excellent rejections towards dyes with different charges (e.g. 99.0% for Congo Red) as well as the lowest rejections towards divalent salts (e.g. 4.1% for Na2SO4) at an operating pressure of 2 bar. Moreover, the membranes exhibited good organic solvent resistance, structural stability together with favorable performance in dealing with textile effluent, demonstrating their great potential in practical applications.

Ma Z.

Study on intelligent modification of membrane surface based on membrane cleaning response

[D]. Tianjin: Tianjin Polytechnic University, 2018

[本文引用: 1]

马 忠.

基于膜清洗响应的膜表面智能改性研究

[D]. 天津: 天津工业大学, 2018

[本文引用: 1]

He A, Zhang C, Lv Y, et al.

Mussel-inspired coatings directed and accelerated by an electric field

[J]. Macromol. Rapid Commun., 2016, 37(17): 1460

[本文引用: 1]

Mao C C, Wang X, Zhang W, et al.

Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance

[J]. Colloids Surf., 2021, 614A: 126136

Almeida L C, Frade T, Correia R D, et al.

Electrosynthesis of polydopamine-ethanolamine films for the development of immunosensing interfaces

[J]. Sci. Rep., 2021, 11(1): 2237

DOI      PMID      [本文引用: 1]

We report a straightforward and reproducible electrochemical approach to develop polydopamine-ethanolamine (ePDA-ETA) films to be used as immunosensing interfaces. ETA is strongly attached to polydopamine films during the potentiodynamic electropolymerization of dopamine. The great advantage of the electrochemical methods is to generate the oxidized species (quinones), which can readily react with ETA amine groups present in solution, with the subsequent incorporation of this molecule in the polymer. The presence of ETA and its effect on the electrosynthesis of polydopamine was accessed by cyclic voltammetry, ellipsometry, atomic force microscopy, FTIR and X-ray photoelectron spectroscopy. The adhesive and biocompatible films enable a facile protein linkage, are resilient to flow assays, and display intrinsic anti-fouling properties to block non-specific protein interactions, as monitored by real-time surface plasmon resonance, and confirmed by ellipsometry. Immunoglobulin G (IgG) and Anti-IgG were used in this work as model proteins for the affinity sensor. By using the one-step methodology (ePDA-ETA), the lower amount of immobilized biorecognition element, IgG, compared to that deposited on ePDA or on ETA post-modified film (ePDA/ETA), allied to the presence of ETA, improved the antibody-antigen affinity interaction. The great potential of the developed platform is its versatility to be used with any target biorecognition molecules, allowing both optical and electrochemical detection.

Lv Y, Yang H C, Liang H Q, et al.

Nanofiltration membranes via co-deposition of polydopamine/polyethylenimine followed by cross-linking

[J]. J. Membr. Sci., 2015, 476: 50

[本文引用: 1]

/