Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 933-942    DOI: 10.11901/1005.3093.2023.427
  研究论文 本期目录 | 过刊浏览 |
8Cr4Mo4V钢激光冲击残余应力的演化仿真及其对疲劳性能的影响
孙玉凤1, 刘伟军1, 张宏伟2, 苏勇3, 魏英华4, 刘贵胜1, 于兴福1()
1.沈阳工业大学机械工程学院 沈阳 110870
2.民航东北地区空中交通管理局气象中心 沈阳 110169
3.沈阳化工大学机械与动力工程学院 沈阳 110142
4.沈阳工业大学材料科学与工程学院 沈阳 110870
Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Fatigue Performance
SUN Yufeng1, LIU Weijun1, ZHANG Hongwei2, SU Yong3, WEI Yinghua4, LIU Guisheng1, YU Xingfu1()
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Northeast Air Traffic Administration Meteorological Center of Civil Aviation, Shenyang 110169, China
3.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
4.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
引用本文:

孙玉凤, 刘伟军, 张宏伟, 苏勇, 魏英华, 刘贵胜, 于兴福. 8Cr4Mo4V钢激光冲击残余应力的演化仿真及其对疲劳性能的影响[J]. 材料研究学报, 2023, 37(12): 933-942.
Yufeng SUN, Weijun LIU, Hongwei ZHANG, Yong SU, Yinghua WEI, Guisheng LIU, Xingfu YU. Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Fatigue Performance[J]. Chinese Journal of Materials Research, 2023, 37(12): 933-942.

全文: PDF(15724 KB)   HTML
摘要: 

对8Cr4Mo4V钢的激光冲击残余应力进行演化仿真和实验验证,并观察其微观组织、检测其硬度和旋转弯曲疲劳性能,研究了激光冲击强化对其残余应力和疲劳性能的影响。结果表明,激光冲击强化在8Cr4Mo4V钢的表层产生了较大的残余压应力,有限元法的计算结果和实测值分别为-607和-584 MPa。在激光冲击强化过程中等离子体冲击波使8Cr4Mo4V钢表面的碳化物碎化和次表面二次碳化物析出,在近表面产生的剧烈塑性变形使表面硬度提高。同时,残余应力、表面硬度的提高以及次表面二次碳化物的析出抑制了疲劳裂纹的萌生,使裂纹的扩展速率降低,裂纹源由表层转移到次表层。激光冲击强化使8Cr4Mo4V钢的旋转弯曲疲劳性能显著提高,疲劳强度提高约45.95%。

关键词 金属材料8Cr4Mo4V钢激光冲击强化数值模拟残余应力疲劳性能    
Abstract

The effect of laser shock peening (LSP) on the residual stress and fatigue properties of 8Cr4Mo4V steel was studied by numerical simulation and experimental verification in terms of the residual stress evolution, microstructure observation, hardness and rotating bending fatigue performance tests. The results show that LSP causes a large compressive residual stress on the surface of 8Cr4Mo4V steel, which was acquired to be -607 MPa and -584 MPa by finite element method and the experimental measurement. During the process of LSP, the plasma shock wave may shatter carbides on the surface of the steel into smaller pieces, while induce the secondary precipitation of subsurface carbides and the severe plastic deformation of the substrate near the surface, thus increasing the surface hardness of the 8Cr4Mo4V steel. The increase of residual stress and surface hardness and the precipitation of secondary carbides on the subsurface may effectively inhibit the initiation of fatigue cracks and slow down the crack propagation rate. Therefore, the crack source is transferred from the surface layer to the subsurface layer. The fatigue strength of 8Cr4Mo4V steel after LSP is increased by about 45.95% and the rotating bending fatigue performance is significantly improved.

Key wordsmetallic materials    8Cr4Mo4V steel    laser shock peening    numerical simulation    residual stress    fatigue properties
收稿日期: 2023-08-28     
ZTFLH:  TN249  
基金资助:国家重点研发计划(2022YFB4602402);辽宁省教育厅项目(JYTMS20231194)
通讯作者: 于兴福,教授,yuxingfu@163.com,研究方向为耐热钢、高温合金及激光冲击强化
Corresponding author: YU Xingfu, Tel: 13604072060, E-mail: yuxingfu@163.com
作者简介: 孙玉凤,女,1991年生,博士生
ElementCCrMoVSiMnFe
Content0.804.024.050.930.160.29Bal.
表1  8Cr4Mo4V钢的化学成分
ParametersElastic modulus, E / GPaPoisson ratio, υDensity, ρ / g·cm-3
Value2060.307.85
表2  8Cr4Mo4V轴承钢的力学性能参数
图1  热处理和LSP示意图
图2  等离子体膨胀示意图
图3  残余应力场形成过程的示意图
图4  有限元模型和冲击波加载示意图
图5  用有限元法计算残余应力的分布
图6  LSP前后8Cr4Mo4V钢的硬度和残余应力
图7  LSP前后8Cr4Mo4V钢的显微组织SEM像和碳化物统计
图8  LSP前后8Cr4Mo4V钢的显微组织TEM像
图9  未经激光冲击强化和经激光冲击强化且去除不同深度的表面损伤层8Cr4Mo4V钢的旋转弯曲疲劳强度
图10  未经激光冲击强化和经激光冲击强化且去除不同深度表面损伤层8Cr4Mo4V钢的旋转弯曲疲劳断口形貌
图11  激光冲击强化使碳化物碎化和促进二次析出的示意图
图12  LSP前后8Cr4Mo4V钢在旋转弯曲疲劳过程中裂纹的萌生和扩展示意图
1 He Z R, Shen Y Z, Tao J, et al. Laser shock peening regulating aluminum alloy surface residual stresses for enhancing the mechanical properties: roles of shock number and energy [J]. Surf. Coat. Technol., 2021, 421: 127481
doi: 10.1016/j.surfcoat.2021.127481
2 Lu J Z, Lu H F, Xu X, et al. High-performance integrated additive manufacturing with laser shock peening-induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components [J]. Int. J. Mach. Tools Manuf., 2020, 148: 103475
doi: 10.1016/j.ijmachtools.2019.103475
3 Jiao Y, He W F, Shen X J. Enhanced high cycle fatigue resistance of Ti-17 titanium alloy after multiple laser peening without coating [J]. Int. J. Adv. Manuf. Technol., 2019, 104: 1333
doi: 10.1007/s00170-019-03993-8
4 Nie X F, Wei C, Hou Z W, et al. Improving fatigue performance of titanium alloy simulated-blade subjected to foreign object damage by laser shock peening [J]. J. Aerosp. Power, 2021, 36(1): 137
4 聂祥樊, 魏 晨, 侯志伟 等. 激光冲击强化提高外物打伤钛合金模拟叶片高周疲劳性能 [J]. 航空动力学报, 2021, 36(1): 137
5 Xiao Z X, Mao J X, Tian T Y, et al. Numerical simulation and experimental verification on laser shock peening for turbine mortise [J]. J. Aerosp. Power, 2022, 37(11): 2448
5 肖值兴, 毛建兴, 田腾跃 等. 涡轮盘榫槽激光冲击强化数值模拟与试验验证 [J]. 航空动力学报, 2022, 37(11): 2448
6 Gou L, Ma Y E, Du Y. Continuous dynamic numerical analysis of residual stress field under multi-point laser shock peening [J]. J. Aerosp. Power, 2019, 34(12): 2738
6 苟 磊, 马玉娥, 杜 永. 多点连续动态激光冲击强化残余应力场数值分析 [J]. 航空动力学报, 2019, 34(12): 2738
7 Hu Y X, Yao Z Q, Hu J. Numerical simulation of residual stress field for laser shock processing [J]. Chin. J. Lasers, 2006, 33(6): 846
7 胡永祥, 姚振强, 胡 俊. 激光冲击强化残余应力场的数值仿真分析 [J]. 中国激光, 2006, 33(6): 846
8 Xu G, Luo K Y, Dai F Z, et al. Effects of scanning path and overlapping rate on residual stress of 316L stainless steel blade subjected to massive laser shock peening treatment with square spots [J]. Appl. Surf. Sci., 2019, 481: 1053
doi: 10.1016/j.apsusc.2019.03.093
9 Xu G, Lu H F, Luo K Y, et al. Effects of surface curvature on residual stress field of 316L stainless steel subjected to laser shock peening [J]. Opt. Laser Technol., 2021, 144: 107420
doi: 10.1016/j.optlastec.2021.107420
10 Ge L C, Cao Y P, Hua G R, et al. The effect of surface curvature on surface residual stress field distribution of laser shock materials [J]. Surf. Technol., 2020, 49(4): 284
10 葛良辰, 曹宇鹏, 花国然 等. 表面曲率对激光冲击曲面材料表面残余应力场分布的影响 [J]. 表面技术, 2020, 49(4): 284
11 Wu Z H, Zhou L C, Zhang B, et al. Effect of selective laser shock peening on vibration response of 2024 aluminum alloy blade [J]. Surf. Technol., 2022, 51(1): 348
11 吴郑浩, 周留成, 张 波 等. 激光冲击选区强化对2024铝合金叶片振动响应特性的影响 [J]. 表面技术, 2022, 51(1): 348
12 Tang K, Zhou L C, He W F, et al. Experimental study on influences of laser shock processing on fatigue performance of LZ50 axle steels [J]. China Mech. Eng., 2020, 31(3): 267
12 唐 凯, 周留成, 何卫峰 等. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究 [J]. 中国机械工程, 2020, 31(3): 267
13 Chen C, Zhang X Y, Yan X J, et al. Effect of laser shock peening on combined low- and high-cycle fatigue life of casting and forging turbine blades [J]. J. Iron Steel Res. Int., 2018, 25: 108
doi: 10.1007/s42243-017-0013-z
14 Liu G L, Cao Y H, Yang K, et al. Thermal fatigue crack growth behavior of ZCuAl10Fe3Mn2 alloy strengthened by laser shock processing [J]. Trans. Nonferr. Metals Soc. China, 2021, 31(21): 1023
doi: 10.1016/S1003-6326(21)65558-9
15 Zheng X W, Liang Y C, He X T, et al. The effect of laser shock peening on the microstructure and high-temperature mechanical properties of AZ31 alloy [J]. J. Mater. Eng. Perform., 2021, 30(6): 4282
doi: 10.1007/s11665-021-05723-2
16 Chen H, Feng A X, Li J, et al. Effects of multiple laser peening impacts on mechanical properties and microstructure evolution of 40CrNiMo steel [J]. J. Mater. Eng. Perform., 2019, 28(5): 2522
doi: 10.1007/s11665-019-04034-x
17 Ganesh P, Rai A K, Dwivedi P K, et al. Study on enhancing fatigue life of SAE 9260 spring steel with surface defect through laser shock peening [J]. J. Mater. Eng. Perform., 2019, 28(4): 2029
doi: 10.1007/s11665-019-03990-8
18 Wu J F, Che Z G, Zou S K, et al. Surface integrity of TA19 notched simulated blades with laser shock peening and its effect on fatigue strength [J]. J. Mater. Eng. Perform., 2020, 29(8): 5184
doi: 10.1007/s11665-020-05025-z
19 Yan K, Wei P B, Ren F Z, et al. Enhance fatigue resistance of nanocrystalline NiTi by laser shock peening [J]. Shap. Mem. Superelast., 2019, 5: 436
doi: 10.1007/s40830-019-00256-z
20 Chupakhin S, Klusemann B, Huber N, et al. Application of design of experiments for laser shock peening process optimization [J]. Int. J. Adv. Manuf. Technol., 2019, 102: 1567
doi: 10.1007/s00170-018-3034-2
21 Su Y, Yang S, Yu X F, et al. Effect of Austempering temperature on microstructure and mechanical properties of M50 bearing steel [J]. J. Mater. Res. Technol., 2022, 20: 4576
doi: 10.1016/j.jmrt.2022.09.002
22 Yu X F, Wang S J, Zheng D Y, et al. Effect of graded solution treatments on microstructure and hardness of 8Cr4Mo4V steel [J]. Chin. J. Mater. Res., 2022, 36(4): 287
doi: 10.11901/1005.3093.2021.702
22 于兴福, 王士杰, 郑冬月 等. 分级固溶处理对8Cr4Mo4V钢的微观组织和硬度的影响 [J]. 材料研究学报, 2022, 36(4): 287
doi: 10.11901/1005.3093.2021.702
23 Yu X F, Wang S Y, Wang Y P, et al. Effect of vacuum graded quenching on microstructure and mechanical properties of 8Cr4Mo4V steel [J]. Chin. J. Mater. Res., 2022, 36(6): 443
doi: 10.11901/1005.3093.2022.062
23 于兴福, 王盛宇, 王宇蓬 等. 真空分级淬火对8Cr4Mo4V钢组织和性能的影响 [J]. 材料研究学报, 2022, 36(6): 443
doi: 10.11901/1005.3093.2022.062
24 Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry [J]. J. Appl. Phys., 1990, 68(2): 775
doi: 10.1063/1.346783
25 Zhang X Q, Zheng R, Qi X L, et al. Investigation on finite element meshes in numerical analysis of gear laser shock processing [J]. Mech. Sci. Technol. Aerosp. Eng., 2013, 32(12): 1829
25 张兴权, 郑 如, 戚晓利 等. 齿轮激光冲击强化数值模拟中有限元网格划分的研究 [J]. 机械科学与技术, 2013, 32(12): 1829
26 Amarchinta H K, Grandhi R V, Clauer A H, et al. Simulation of residual stress induced by a laser peening process through inverse optimization of material models [J]. J. Mater. Process. Technol., 2010, 210: 1997
doi: 10.1016/j.jmatprotec.2010.07.015
27 Wang C Y, Luo K Y, Wang J, et al. Carbide-facilitated nanocrystallization of martensitic laths and carbide deformation in AISI 420 stainless steel during laser shock peening [J]. Int. J. Plasticity, 2022, 150: 103191
doi: 10.1016/j.ijplas.2021.103191
28 Cui T, He T T, Du S M, et al. Effect of laser shock processing on microstructure and tribological behavior of GCr15 bearing steel [J]. Surf. Technol., 2022, 51(7): 353
28 崔 通, 贺甜甜, 杜三明 等. 激光冲击强化对GCr15轴承钢微观组织和摩擦学行为的影响 [J]. 表面技术, 2022, 51(7): 353
29 Jiao Q Y, Han P P, Lu Y, et al. Effect of laser shock peening on residual stress and mechanical properties of TA15 titanium alloy [J]. J. Plasticity Eng., 2021, 28(3): 146
29 焦清洋, 韩培培, 陆 莹 等. 激光冲击强化对TA15钛合金残余应力和力学性能的影响 [J]. 塑性工程学报, 2021, 28(3): 146
doi: 10.3969/j.issn.1007-2012.2021.03.019
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.