|
|
长时热暴露对一种抗热腐蚀单晶高温合金/Pt-Al涂层体系微观组织演化的影响 |
张英健1, 张思倩1( ), 王栋2, 张浩宇1, 周舸1, 陈立佳1 |
1.沈阳工业大学材料科学与工程学院 沈阳 110870 2.中国科学院金属研究所 沈阳 110016 |
|
Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413 |
ZHANG Yingjian1, ZHANG Siqian1( ), WANG Dong2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1 |
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
张英健, 张思倩, 王栋, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种抗热腐蚀单晶高温合金/Pt-Al涂层体系微观组织演化的影响[J]. 材料研究学报, 2023, 37(12): 889-899.
Yingjian ZHANG,
Siqian ZHANG,
Dong WANG,
Haoyu ZHANG,
Ge ZHOU,
Lijia CHEN.
Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413[J]. Chinese Journal of Materials Research, 2023, 37(12): 889-899.
1 |
Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
doi: 10.1016/j.actamat.2012.05.023
|
2 |
Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta. Metall. Sin., 2019, 55(09): 1077
|
2 |
张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(09): 1077
|
3 |
Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects [J]. Int. Mater. Rev., 2019, 64(6): 355
doi: 10.1080/09506608.2018.1516713
|
4 |
Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
|
5 |
Yan G, Yu W, Shengping S. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction [J]. Corros Sci., 2020, 173: 108760
doi: 10.1016/j.corsci.2020.108760
|
6 |
Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J Mater Sci., 1999, 34(16): 3957
doi: 10.1023/A:1004643311001
|
7 |
Liu H, Xu M M, Li S, et al. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating [J]. J Mater Sci Technol., 2020, 54: 132
doi: 10.1016/j.jmst.2020.05.007
|
8 |
Latief F H, Kakehi K. Influence of thermal exposure on the creep properties of an aluminized Ni-based single crystal superalloy in different surface orientations [J]. Mater. Des., 2014, 56: 816
doi: 10.1016/j.matdes.2013.11.075
|
9 |
Qin X Z, Guo J T, Yuan C, et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy [J]. Mater. Sci. Eng. A., 2012, 543: 121
doi: 10.1016/j.msea.2012.02.059
|
10 |
Yang L, Chen M, Wang J, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J Mater Sci Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
|
11 |
Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Creep behavior of Pt-aluminide (PtAl) coated directionally solidified Ni-based superalloy CM-247LC after thermal exposure [J]. Mater. Sci. Eng. A., 2015, 641: 84
doi: 10.1016/j.msea.2015.06.011
|
12 |
Zhang J C, Liu L, Huang T W, et al. Coarsening kinetics of γ' precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J Mater Sci Technol., 2021, 62(03): 1
doi: 10.1016/j.jmst.2020.05.034
|
13 |
Moshtaghin R S, Asgari S. Growth kinetics of γ' precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
|
14 |
Chen X, Yao Z, Dong J, et al. The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure [J]. J. Alloys Compd., 2018, 735: 928
doi: 10.1016/j.jallcom.2017.11.166
|
15 |
Tan Z, Yang L, Wang X, et al. Evolution of TCP phase during long term thermal exposure in several Re-Containing single crystal superalloys [J]. Acta. Metall. Sin. (English Letters), 2020, 33(5): 731
|
16 |
Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ' and TCP phases in single crystal Ni-base superalloy [J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
|
17 |
Yuan K, Eriksson R, Lin P R, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation [J]. Surf. Coat. Technol., 2013, 232: 204
doi: 10.1016/j.surfcoat.2013.05.008
|
18 |
Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature [J]. Corros Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
|
19 |
Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050℃ [J]. Surf. Coat. Technol., 2004, 176(3): 272
doi: 10.1016/S0257-8972(03)00767-9
|
20 |
Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202(8): 1385
doi: 10.1016/j.surfcoat.2007.06.041
|
21 |
Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng. A., 2012, 536: 14
doi: 10.1016/j.msea.2011.10.016
|
22 |
Li S, Qi H, Yang X. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment [J]. Rare Metals, 2018, 37(3): 204
doi: 10.1007/s12598-017-0931-8
|
23 |
Han L, Zheng S, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int J Fatigue., 2021, 153: 106500
doi: 10.1016/j.ijfatigue.2021.106500
|
24 |
Han L, Li P, Yu S, et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism [J]. Int J Fatigue., 2022, 154: 106558
doi: 10.1016/j.ijfatigue.2021.106558
|
25 |
Shi L, Xin L, Wang X, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloys Compd., 2015, 649: 515
doi: 10.1016/j.jallcom.2015.07.095
|
26 |
Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204(21): 3641
doi: 10.1016/j.surfcoat.2010.04.041
|
27 |
Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
|
28 |
Aghaie-Khafri M, Farahany S. Creep life prediction of thermally exposed rene 80 superalloy [J]. J. Mater. Eng. Perform., 2010, 19(7): 1065
doi: 10.1007/s11665-009-9584-6
|
29 |
Yin B, Xie G, Lou L, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
|
30 |
Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [J]. Superalloys, 1996: 9
|
31 |
Chen M, Shen M, Zhu S, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000℃ [J]. Corros Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
|
32 |
Li J, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193:108776
doi: 10.1016/j.matdes.2020.108776
|
33 |
Liu Y, Zou M, Su H, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
|
34 |
Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng. A., 2003, 361(1): 191
doi: 10.1016/S0921-5093(03)00517-3
|
35 |
Xiang X, Yao Z, Dong J, et al. Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging [J]. J. Alloys Compd., 2019, 787: 216
doi: 10.1016/j.jallcom.2019.01.389
|
36 |
Zhan X, Wang D, Ge Z, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
doi: 10.1016/j.surfcoat.2022.128487
|
37 |
Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56(16): 4277
doi: 10.1016/j.actamat.2008.04.061
|
38 |
Suzuki A, Rae C M F. Secondary reaction zone formations in coated Ni-base single crystal superalloys [J]. J Phys Conf Ser., 2009, 165: 12002
doi: 10.1088/1742-6596/165/1/012002
|
39 |
Pollock T M, Argon A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Metall. Mater., 1994, 42(6): 1859
doi: 10.1016/0956-7151(94)90011-6
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|