Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 889-899    DOI: 10.11901/1005.3093.2022.600
  研究论文 本期目录 | 过刊浏览 |
长时热暴露对一种抗热腐蚀单晶高温合金/Pt-Al涂层体系微观组织演化的影响
张英健1, 张思倩1(), 王栋2, 张浩宇1, 周舸1, 陈立佳1
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.中国科学院金属研究所 沈阳 110016
Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413
ZHANG Yingjian1, ZHANG Siqian1(), WANG Dong2, ZHANG Haoyu1, ZHOU Ge1, CHEN Lijia1
1.School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张英健, 张思倩, 王栋, 张浩宇, 周舸, 陈立佳. 长时热暴露对一种抗热腐蚀单晶高温合金/Pt-Al涂层体系微观组织演化的影响[J]. 材料研究学报, 2023, 37(12): 889-899.
Yingjian ZHANG, Siqian ZHANG, Dong WANG, Haoyu ZHANG, Ge ZHOU, Lijia CHEN. Effect of Long-term Thermal Exposure on Microstructure Evolution of a Platinum Modified Aluminide Coated Single Crystal Superalloy DD413[J]. Chinese Journal of Materials Research, 2023, 37(12): 889-899.

全文: PDF(18854 KB)   HTML
摘要: 

用电镀Pt和气相渗铝方法在抗热腐蚀镍基单晶高温合金DD413表面制备Pt-Al涂层并将其分别在850℃和1000℃长时热暴露,用扫描电子显微镜(SEM)、能谱分析仪(EDS)、透射电子显微镜(TEM)和X射线衍射仪(XRD)等手段表征其基体/涂层间的互扩散行为和近涂层基体界面的微观组织,研究了长时热暴露对其微观组织演化的影响。结果表明:随着热暴露时间的延长互扩散区(IDZ)内的MC碳化物和σ-TCP相都发生不同程度的溶解,并在界面上析出M23C6碳化物。同时,二次反应区(SRZ)的尺寸及其内的σ-TCP相的含量不断提高。近涂层基体中的立方状γ'相依次发生球化和相互联接呈筏形转变。热暴露温度越高上述组织退化过程越明显,长时热暴露引起的组织退化与高温下元素的扩散密切相关。

关键词 金属材料镍基单晶高温合金Pt-Al涂层长时热暴露界面显微组织退化    
Abstract

A nickel base single crystal superalloy DD413 was coated with platinum modified aluminide (Pt-Al) coating via successively Pt electrodepositing and vapor phase aluminizing, then the degradation behavior of the Pt-Al coating/ DD413 alloy after long-term thermal exposure in air at 850℃ and 1000℃is studied by means of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The results show that with the extension of thermal exposure time, MC carbide and σ-TCP phase dissolve to varying degrees in the interdiffusion of zone (IDZ), accompanied by M23C6 carbide precipitation on the interface. At the same time, the size of the secondary reaction of zone (SRZ) and σ-TCP phase increases continuously. In the substrate beneath the coating, cubic γ' precipitates are spheroidized and connected with each other in a raft shape. The higher thermal exposure temperature, the more obvious the above microstructure degradation process. It can be seen from the comparative analysis that the microstructure degradation after long-term thermal exposure is closely related to the diffusion of elements at high temperatures.

Key wordsmetallic materials    Nickel base single crystal superalloy    Pt-Al Coating    Long-term thermal exposure    Interface microstructure degradation
收稿日期: 2022-11-14     
ZTFLH:  TG113  
基金资助:国家自然科学基金(52071219)
通讯作者: 张思倩,教授,sqzhang@alum.imr.ac.cn,研究方向为单晶高温合金变形损伤机制
Corresponding author: ZHANG Siqian, Tel: 13700022372, E-mail: sqzhang@alum.imr.ac.cn
作者简介: 张英健,男,1998年生,硕士生
AlloyCCrCoWMoAlTiTaNi
DD4130.071293.81.93.64.15Bal.
表1  DD413合金名义成分(%,质量分数)
图1  涂层/基体截面的示意图
图2  原始态Pt-Al涂层的XRD谱
图3  原始态Pt-Al涂层/合金截面的形貌和形貌中红色方框对应EDS能谱
图4  Pt-Al涂层/合金截面蚀刻后的BSE图像和EDS能谱
图5  Pt-Al涂层/合金的TEM图像及选区衍射花样(SAD)
图6  在850℃热暴露不同时间后Pt-Al涂层/合金截面的BSE图像
图7  850℃热暴露3600 h后IDZ中的块状析出相的TEM图像及选区衍射花样(SAD)
图8  在850℃热暴露不同时间后蚀刻的Pt-Al涂层/合金截面的BSE图像
图9  在850℃热暴露3600 h后的TEM图像、选区衍射花样(SAD)和针状相对应的EDS能谱
图10  在1000℃长时热暴露不同时间后Pt-Al涂层/合金截面的BSE图像:
图11  在850℃和1000℃热暴露后IDZ、SRZ厚度的演化趋势
图12  在850℃和1000℃热暴露后IDZ中MC碳化物的演化趋势
图13  长期热暴露后Pt-Al/DD413体系的XRD谱
图14  Pt-Al涂层/合金截面蚀刻后在1000℃长时热暴露不同时间后的BSE图像
图15  在1000℃/3600 h后的TEM形貌、选区衍射花样(SAD)和与针状相对应的EDS能谱
1 Zhu Z, Basoalto H, Warnken N, et al. A model for the creep deformation behaviour of nickel-based single crystal superalloys [J]. Acta Mater., 2012, 60(12): 4888
doi: 10.1016/j.actamat.2012.05.023
2 Zhang J, Wang L, Wang D, et al. Recent progress in research and development of nickel-based single crystal superalloys [J]. Acta. Metall. Sin., 2019, 55(09): 1077
2 张 健, 王 莉, 王 栋 等. 镍基单晶高温合金的研发进展 [J]. 金属学报, 2019, 55(09): 1077
3 Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects [J]. Int. Mater. Rev., 2019, 64(6): 355
doi: 10.1080/09506608.2018.1516713
4 Pradhan D, Mahobia G S, Chattopadhyay K, et al. Effect of surface roughness on corrosion behavior of the superalloy IN718 in simulated marine environment [J]. J. Alloys Compd., 2018, 740: 250
doi: 10.1016/j.jallcom.2018.01.042
5 Yan G, Yu W, Shengping S. Oxidation protection of enamel coated Ni based superalloys: Microstructure and interfacial reaction [J]. Corros Sci., 2020, 173: 108760
doi: 10.1016/j.corsci.2020.108760
6 Itoh Y, Saitoh M, Ishiwata Y. Influence of high-temperature protective coatings on the mechanical properties of nickel-based superalloys [J]. J Mater Sci., 1999, 34(16): 3957
doi: 10.1023/A:1004643311001
7 Liu H, Xu M M, Li S, et al. Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinum-modified aluminide coating [J]. J Mater Sci Technol., 2020, 54: 132
doi: 10.1016/j.jmst.2020.05.007
8 Latief F H, Kakehi K. Influence of thermal exposure on the creep properties of an aluminized Ni-based single crystal superalloy in different surface orientations [J]. Mater. Des., 2014, 56: 816
doi: 10.1016/j.matdes.2013.11.075
9 Qin X Z, Guo J T, Yuan C, et al. Long-term thermal exposure responses of the microstructure and properties of a cast Ni-base superalloy [J]. Mater. Sci. Eng. A., 2012, 543: 121
doi: 10.1016/j.msea.2012.02.059
10 Yang L, Chen M, Wang J, et al. Microstructure and composition evolution of a single-crystal superalloy caused by elements interdiffusion with an overlay NiCrAlY coating on oxidation [J]. J Mater Sci Technol., 2020, 45: 49
doi: 10.1016/j.jmst.2019.11.017
11 Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Creep behavior of Pt-aluminide (PtAl) coated directionally solidified Ni-based superalloy CM-247LC after thermal exposure [J]. Mater. Sci. Eng. A., 2015, 641: 84
doi: 10.1016/j.msea.2015.06.011
12 Zhang J C, Liu L, Huang T W, et al. Coarsening kinetics of γ' precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging [J]. J Mater Sci Technol., 2021, 62(03): 1
doi: 10.1016/j.jmst.2020.05.034
13 Moshtaghin R S, Asgari S. Growth kinetics of γ' precipitates in superalloy IN-738LC during long term aging [J]. Mater. Des., 2003, 24(5): 325
doi: 10.1016/S0261-3069(03)00061-X
14 Chen X, Yao Z, Dong J, et al. The effect of stress on primary MC carbides degeneration of Waspaloy during long term thermal exposure [J]. J. Alloys Compd., 2018, 735: 928
doi: 10.1016/j.jallcom.2017.11.166
15 Tan Z, Yang L, Wang X, et al. Evolution of TCP phase during long term thermal exposure in several Re-Containing single crystal superalloys [J]. Acta. Metall. Sin. (English Letters), 2020, 33(5): 731
16 Dubiel B, Indyka P, Kalemba-Rec I, et al. The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ' and TCP phases in single crystal Ni-base superalloy [J]. J. Alloys Compd., 2018, 731: 693
doi: 10.1016/j.jallcom.2017.10.076
17 Yuan K, Eriksson R, Lin P R, et al. Modeling of microstructural evolution and lifetime prediction of MCrAlY coatings on nickel based superalloys during high temperature oxidation [J]. Surf. Coat. Technol., 2013, 232: 204
doi: 10.1016/j.surfcoat.2013.05.008
18 Yang H Z, Zou J P, Shi Q, et al. Comprehensive study on the microstructure evolution and oxidation resistance performance of NiCoCrAlYTa coating during isothermal oxidation at High temperature [J]. Corros Sci., 2020, 175: 108889
doi: 10.1016/j.corsci.2020.108889
19 Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050℃ [J]. Surf. Coat. Technol., 2004, 176(3): 272
doi: 10.1016/S0257-8972(03)00767-9
20 Rahmani K, Nategh S. Influence of aluminide diffusion coating on the tensile properties of the Ni-base superalloy René 80 [J]. Surf. Coat. Technol., 2008, 202(8): 1385
doi: 10.1016/j.surfcoat.2007.06.041
21 Alam M Z, Satyanarayana D V V, Chatterjee D, et al. Effect of prior cyclic oxidation on the creep behavior of directionally solidified (DS) CM-247LC alloy [J]. Mater. Sci. Eng. A., 2012, 536: 14
doi: 10.1016/j.msea.2011.10.016
22 Li S, Qi H, Yang X. Oxidation-induced damage of an uncoated and coated nickel-based superalloy under simulated gas environment [J]. Rare Metals, 2018, 37(3): 204
doi: 10.1007/s12598-017-0931-8
23 Han L, Zheng S, Tao M, et al. Service damage mechanism and interface cracking behavior of Ni-based superalloy turbine blades with aluminized coating [J]. Int J Fatigue., 2021, 153: 106500
doi: 10.1016/j.ijfatigue.2021.106500
24 Han L, Li P, Yu S, et al. Creep/fatigue accelerated failure of Ni-based superalloy turbine blade: Microscopic characteristics and void migration mechanism [J]. Int J Fatigue., 2022, 154: 106558
doi: 10.1016/j.ijfatigue.2021.106558
25 Shi L, Xin L, Wang X, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloys Compd., 2015, 649: 515
doi: 10.1016/j.jallcom.2015.07.095
26 Liu C T, Ma J, Sun X F, et al. Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M [J]. Surf. Coat. Technol., 2010, 204(21): 3641
doi: 10.1016/j.surfcoat.2010.04.041
27 Leng W, Pillai R, Naumenko D, et al. Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys [J]. Corros Sci., 2020, 167: 108494
doi: 10.1016/j.corsci.2020.108494
28 Aghaie-Khafri M, Farahany S. Creep life prediction of thermally exposed rene 80 superalloy [J]. J. Mater. Eng. Perform., 2010, 19(7): 1065
doi: 10.1007/s11665-009-9584-6
29 Yin B, Xie G, Lou L, et al. Effect of Ta on microstructural evolution of NiCrAlYSi coated Ni-base single crystal superalloys [J]. J. Alloys Compd., 2020, 829: 154440
doi: 10.1016/j.jallcom.2020.154440
30 Walston W S, Schaeffer J C, Murphy W H. A new type of microstructural instability in superalloys-SRZ [J]. Superalloys, 1996: 9
31 Chen M, Shen M, Zhu S, et al. Effect of sand blasting and glass matrix composite coating on oxidation resistance of a nickel-based superalloy at 1000℃ [J]. Corros Sci., 2013, 73: 331
doi: 10.1016/j.corsci.2013.04.022
32 Li J, Jing J, He J, et al. Microstructure evolution and elemental diffusion behavior near the interface of Cr2AlC and single crystal superalloy DD5 at elevated temperatures [J]. Mater. Des., 2020, 193:108776
doi: 10.1016/j.matdes.2020.108776
33 Liu Y, Zou M, Su H, et al. Coating-associated microstructure evolution and elemental interdiffusion behavior at a Mo-rich nickel-based superalloy [J]. Surf. Coat. Technol., 2021, 411: 127005
doi: 10.1016/j.surfcoat.2021.127005
34 Liu L R, Jin T, Zhao N R, et al. Formation of carbides and their effects on stress rupture of a Ni-base single crystal superalloy [J]. Mater. Sci. Eng. A., 2003, 361(1): 191
doi: 10.1016/S0921-5093(03)00517-3
35 Xiang X, Yao Z, Dong J, et al. Dissolution behavior of intragranular M23C6 carbide in 617B Ni-base superalloy during long-term aging [J]. J. Alloys Compd., 2019, 787: 216
doi: 10.1016/j.jallcom.2019.01.389
36 Zhan X, Wang D, Ge Z, et al. Microstructural evolution of NiCoCrAlY coated directionally solidified superalloy [J]. Surf. Coat. Technol., 2022, 440: 128487
doi: 10.1016/j.surfcoat.2022.128487
37 Campbell C E. Assessment of the diffusion mobilites in the γ' and B2 phases in the Ni-Al-Cr system [J]. Acta Mater., 2008, 56(16): 4277
doi: 10.1016/j.actamat.2008.04.061
38 Suzuki A, Rae C M F. Secondary reaction zone formations in coated Ni-base single crystal superalloys [J]. J Phys Conf Ser., 2009, 165: 12002
doi: 10.1088/1742-6596/165/1/012002
39 Pollock T M, Argon A S. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates [J]. Acta Metall. Mater., 1994, 42(6): 1859
doi: 10.1016/0956-7151(94)90011-6
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.