Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (5): 332-342    DOI: 10.11901/1005.3093.2021.391
  研究论文 本期目录 | 过刊浏览 |
磁性多孔rGO@Co/CoO复合材料的制备和吸波性能
刘佳良1, 徐东卫1, 陈平1,2()
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2.大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024
Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites
LIU Jialiang1, XU Dongwei1, CHEN Ping1,2()
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

刘佳良, 徐东卫, 陈平. 磁性多孔rGO@Co/CoO复合材料的制备和吸波性能[J]. 材料研究学报, 2022, 36(5): 332-342.
Jialiang LIU, Dongwei XU, Ping CHEN. Preparation and Microwave Absorption Properties of Magnetic Porous rGO@Co/CoO Composites[J]. Chinese Journal of Materials Research, 2022, 36(5): 332-342.

全文: PDF(9534 KB)   HTML
摘要: 

使用氧化石墨烯和乙酰丙酮钴为原料,用溶剂热和高温煅烧法合成了一系列三维多孔rGO@Co/CoO纳米复合材料。采用X射线衍射(XRD)和X射线光电子能谱(XPS)表征了材料的晶体结构及元素组成,用拉曼光谱分析了材料内部的石墨化程度及结构缺陷,用扫描电镜(SEM)和透射电镜(TEM)观察和分析了材料的形貌及微观结构。结果表明,煅烧温度为350、500及650℃制备的产物分别为rGO@CoO复合材料、面心立方(fcc型)rGO@Co纳米复合材料以及双晶型(fcc和hcp型)rGO@Co纳米复合材料。填充量(质量分数)为10%时,S500的吸波性能最优异,RLmin值为-74.5 dB,对应的频率为13.9 GHz,匹配厚度为2.5 mm,有效吸收带宽为6.1 GHz(10.7~16.8 GHz)。这种材料优异的吸波性能,可归因于多种损耗机制共同作用和独特的三维孔隙结构。

关键词 复合材料三维石墨烯磁性纳米粒子吸波性能    
Abstract

Nanocomposites of reduced graphene oxide coated cobalt or cobalt oxide (rGO@Co/CoO) were synthesized by solvothermal and high-temperature calcination method with solutions of AA grade Co and graphene oxide as raw materials. The prepared products are characterized by means of XRD, Raman spectroscopy, XPS, SEM and TEM. Results show that three type of composites could be fabricated by calcination at 350, 500 and 650°C respectively, namely rGO@CoO of face-centered cubic (fcc) phase, rGO@Co of fcc phase, and rGO@Co of fcc and hcp two-phases. Among others, the fcc rGO@Co (S500) exhibits excellent electromagnetic wave absorption properties (the relevant property was measured on a hollow ring made of the paraffin filled with the composite): The hollow ring with a low mass filling ratio of 10% (mass fraction) fcc rGO@Co (S500) nanocomposite presents the minimum reflection loss (RLmin) and maximum effective absorption bandwidth (EAB), corresponding to the RLmin and EAB are -74.5 dB and 6.1 GHz, respectively for the hollow ring with a wall of 2.5 mm in thickness. We believed that the present approach may be an economic and green route for the controllable synthesis of porous functionalized graphene materials as microwave absorbers.

Key wordscomposite    three-dimensional graphene    magnetic nanoparticles    electromagnetic wave absorption performance
收稿日期: 2021-07-02     
ZTFLH:  TB332  
基金资助:兴辽英才创新领军人才项目(XLYC1802085);国家自然科学基金(51873109);大连市科技创新基金重大项目(2019J11CY007);中央高校基本科研业务费资助项目(DUT20TD207);三束材料改性教育部重点实验室基金(KF2004)
作者简介: 刘佳良,男,1996年生,硕士生
图1  rGO@Co/CoO纳米复合材料的合成路线
图2  多孔磁性rGO@Co/CoO纳米复合材料的XRD谱
图3  rGO@Co的XPS全谱图、rGO@Co的Co 2p谱图、rGO@Co的C 1s谱图以及GO的C 1s谱图
图4  S350、S500、S650的拉曼光谱
图5  S500不同倍数下SEM照片和S500在不同倍数下TEM照片
图6  S350、S500以及S650的二维及三维反射率
Samples in matrices

Filler loading

/%, mass fraction

Thickness

/mm

RLmin

/dB

EAB

/GHz

Ref.
rGO@CoO/Co102.5-74.56.1This wrok
MGF@Fe3O4232.4-74.46.0[5]
Air@rGO€Fe3O4332.8-527.2[7]
FeCo/Graphene501.5-405[8]
CoO nanosheet-coated Co701.6-30.44.6[10]
Co/C Composite-4.7-58.52.7[12]
RGO-PANI-2-41.44.2[13]
Graphene/ZnO hollow spheres502.2-45.12.3[14]
N-GN/Fe3O4503.4-65.34[17]
α-Fe2O3/rGO504-46.84.9[18]
Hollow Carbon@Fe@Fe3O4501.5-405.2[19]
RGO-Fe3O4503.9-44.64.3[20]
Hollow urchin like α-MnO2501.9-41<4[21]
Dendrite-like Fe3O4704-533.1[22]
Hierarchically porous carbons302.71-62.27.3[24]
表1  文献中吸波材料的吸波性能
图7  S350、S500、S650复合材料介电常数d及磁导率的实部和虚部
图8  介电损耗的正切和磁损耗的正切(tanδμ )
图9  Cole-Cole半圆(ε′对ε″)和1~18 GHz频率范围内的C0值
图10  复合材料S350、S500以及S650的阻抗匹配和衰减常数
1 Liu T, Pang Y, Zhu M, et al. Microporous Co@CoO nanoparticles with superior microwave absorption properties [J]. Nanoscale, 2014, 6: 2447
doi: 10.1039/c3nr05238a
2 Ma X H, Li Y, Shen B, et al. Carbon composite networks with ultrathin skin layers of graphene film for exceptional electromagnetic interference shielding [J]. ACS Appl. Mater. Inter, 2018, 10: 38255
doi: 10.1021/acsami.8b15545
3 Song W L, Guan X T, Fan L Z, et al. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding [J]. J. Mater. Chem.A, 2015, 3: 2097
4 Li X Y, Huang X L, Liu D P, et al. Synthesis of 3D hierarchical Fe3O4/Graphene composites with high lithium storage capacity and for controlled drug delivery [J]. J. Phys. Chem. C, 2011, 115: 21567
doi: 10.1021/jp204502n
5 Xu D W, Xiong X H, Chen P, et al. Superior corrosion-resistant 3D porous magnetic graphene foam-ferrite nanocomposite with tunable electromagnetic wave absorption properties [J]. J. Magn. Magn. Mater., 2019, 469: 428
doi: 10.1016/j.jmmm.2018.09.019
6 Wang S S, Zhao Y, Gao M M, et al. Green synthesis of porous cocoon-like rGO for enhanced microwave-absorbing performances [J]. ACS Appl. Mater. Interfaces, 2018, 10: 42865
doi: 10.1021/acsami.8b15416
7 Zeng Q, Chen P, Yu Q, et al. Self-assembly of graphene hollow microspheres with wideband and controllable microwave absorption properties [J]. Chin. J. Mater. Res., 2018, 32: 119
7 曾 强, 陈 平, 于 祺 等. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装 [J]. 材料研究学报, 2018, 32: 119
8 Chu H R, Chen P, Yu Q, et al. Preparation and microwave absorption properties of FeCo/Graphene [J]. Chin. J. Mater. Res, 2018, 32: 161
8 褚海荣, 陈 平, 于 祺 等. FeCo/石墨烯的制备和吸波性能 [J]. 材料研究学报, 2018, 32: 161
doi: 10.11901/1005.3093.2017.339
9 Chen P, Liu J L, Xu D W, et al. A preparation method of graphene foam composite material loaded with magnetic hollow nanospheres [P]. China patent, 201910826320.5, 2019
9 陈 平, 刘佳良, 徐东卫 等. 一种负载磁性空心纳米球的石墨烯泡沫复合材料的制备方法 [P]. 中国专利, 201910826320.5, 2019
10 Deng J S, Li S M, Zhou Y Y, et al. Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations [J]. J. Colloid Interface Sci., 2018, 509: 406
doi: 10.1016/j.jcis.2017.09.029
11 Liu J L, Chen P, Xu D W, et al. Preparation and microwave absorption properties of magnetic porous RGO@Ni composites [J]. Chin. J. Mater. Res, 2020, 34: 641
11 刘佳良, 陈 平, 徐东卫 等. 磁性多孔RGO@Ni复合材料的制备和吸波性能 [J]. 材料研究学报, 2020, 34: 641
doi: 10.11901/1005.3093.2020.202
12 Zhu B Y, Miao P, Kong J, et al. Co/C composite derived from a newly constructed metal-organic framework for effective microwave absorption [J]. Cryst. Growth Des., 2019, 19: 1518
doi: 10.1021/acs.cgd.9b00064
13 Liu P B, Huang Y. Decoration of reduced graphene oxide with polyaniline film and their enhanced microwave absorption properties [J]. J. Polym. Res., 2014, 21: 430
doi: 10.1007/s10965-014-0430-7
14 Han M K, Yin X Y, Kong L, et al. Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem. A, 2014, 2: 16403
doi: 10.1039/C4TA03033H
15 Kim T Y, Jung G J, Yoo S, et al. Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores [J]. ACS Nano, 2013, 7: 6899
doi: 10.1021/nn402077v
16 Qiu B C, Xing M Y, Zhang J L. Recent advances in three-dimensional graphene based materials for catalysis applications [J]. Chem. Soc. Rev., 2018, 47: 2165
doi: 10.1039/C7CS00904F
17 Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
doi: 10.1016/j.carbon.2017.01.036
18 Chu H R, Zeng Q, Chen P, et al. Synthesis and electromagnetic wave absorption properties of matrimony vine-like iron oxide/reduced graphene oxide prepared by a facile method [J]. J. Alloys Compd., 2017, 719: 296
doi: 10.1016/j.jallcom.2017.05.199
19 Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow Carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3: 10232
doi: 10.1039/C5TC02512E
20 Zong M, Huang Y, Zhao Y, et al. Facile preparation, high microwave absorption and microwave absorbing mechanism of RGO-Fe3O4 composites [J]. RSC Adv., 2013, 3: 23638
doi: 10.1039/c3ra43359e
21 Zhou M, Zhang X, Wei J M, et al. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures [J]. J. Phys. Chem., 2011, 115C: 1398
22 Sun G B, Dong B X, Cao M H, et al. Hierarchical dendrite-like magnetic materials of Fe3O4, γ-Fe2O3 and Fe with high performance of microwave absorption [J]. Chem. Mater., 2011, 23: 1587
doi: 10.1021/cm103441u
23 Zhao B, Guo X Q, Zhao W Y, et al. Facile synthesis of yolk-shell Ni@void@SnO2(Ni3Sn2) ternary composites via galvanic replacement/kirkendall effect and their enhanced microwave absorption properties [J]. Nano Res., 2017, 10: 331
doi: 10.1007/s12274-016-1295-3
24 Wu Z C, Tian K, Huang T, et al. Hierarchically porous carbons derived from biomasses with excellent microwave absorption performance [J]. ACS Appl. Mater. Inter, 2018, 10: 11108
doi: 10.1021/acsami.7b17264
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.