Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (12): 881-888    DOI: 10.11901/1005.3093.2022.661
  研究论文 本期目录 | 过刊浏览 |
中温热处理对Ti65合金淬火组织及室温拉伸性能的影响
谭海兵1,2, 臧健1,2, 梁弼宁1,2, 刘建荣1(), 王清江1(), 赵子博1, 李文渊1
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 10016
2.中国科学技术大学材料科学与工程学院 沈阳 10016
Effect of Medium Heat Treatment on Quenched Micro-structure and Tensile Properties of Ti65 Alloy
TAN Haibing1,2, ZANG Jian1,2, LIANG Bining1,2, LIU Jianrong1(), WANG Qingjiang1(), ZHAO Zibo1, LI Wenyuan1
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

谭海兵, 臧健, 梁弼宁, 刘建荣, 王清江, 赵子博, 李文渊. 中温热处理对Ti65合金淬火组织及室温拉伸性能的影响[J]. 材料研究学报, 2023, 37(12): 881-888.
Haibing TAN, Jian ZANG, Bining LIANG, Jianrong LIU, Qingjiang WANG, Zibo ZHAO, Wenyuan LI. Effect of Medium Heat Treatment on Quenched Micro-structure and Tensile Properties of Ti65 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(12): 881-888.

全文: PDF(5707 KB)   HTML
摘要: 

研究了中温热处理后Ti65合金中淬火马氏体相的分解及其对室温拉伸性能的影响。结果表明:在800℃/10 min热处理后Ti65合金中淬火马氏体相(α'相)内的β稳定元素向界面扩散,分解为α+β相;随着保温时间的延长,β相的形貌由不规则状转变为不同长宽比的棒状。热处理温度的提高,分解产物显著粗化。随着中温热处理温度升高或保温时间的延长,室温拉伸强度呈现快速降低、保持稳定和慢速降低三个阶段。强度快速降低的原因是,马氏体相分解使缺陷和界面密度降低,导致固溶和界面强化效果减弱;马氏体相完全分解后,α板条粗化导致的强度降低和α2相弥散度的提高使强度提高,其综合作用使强度保持相对稳定;中温热处理温度提高到α2相析出温度以上时,强度随着α板条厚度的增加缓慢降低。

关键词 金属材料Ti65合金中温热处理马氏体相分解拉伸性能    
Abstract

Heat treatments in the temperature range of 800~950℃for 10~60 min was applied to water-quenched Ti65 alloy, in order to investigate the martensite decomposition and its effect on tensile properties at room temperature. The results show that detectable martensite decomposition is already found at 800℃ with a holding time of only 10 min. The martensite decomposition occurs through the diffusion of β-stabilizing elements from the interior of α' plate to the interface to form β phase. The morphology of the β phase changes from irregular to regular rods of varied aspect ratio with prolonged holding time. Increasing temperature leads to apparent coarsening of the decomposition products. Both room-temperature tensile and yield strengths decrease after the heat treatments. Nearly constant strength was found for the heat treatments in the range from 800℃/40 min across 850℃ 20 min/40 min/60 min to 900℃/20 min. The decrease of strength is attributed mainly to the weakened solution strengthening induced by the decomposition of martensite phase. After the completion of the decomposition of the martensite phase, the strength remains almost constant due to the balance between the weakening induced by the coarsening of α plate and the strengthening by the dispersed α2 particles.

Key wordsmetallic materials    Ti65 alloy    medium-temperature heat treatment    martensite decomposition    tensile property
收稿日期: 2022-12-12     
ZTFLH:  TG132.32  
基金资助:国家科技重大专项(J2019-VI-0012-0126)
通讯作者: 王清江,研究员,qjwang@imr.ac.cn,研究方向为钛合金研发及工程应用;
刘建荣,研究员,jrliu@imr.ac.cn,研究方向为钛合金研发及工程应用
Corresponding author: WANG Qingjiang, Tel: (024)83978830, E-mail: qjwang@imr.ac.cn;
LIU Jianrong, Tel: (024)23971942, E-mail: jrliu@imr.ac.cn
作者简介: 谭海兵,男,1986年生,博士生
图1  不同条件中温热处理后Ti65合金的显微组织
Solution treatmentMedium temperature treatments
1030℃/2 h, WQAs-quenched
800℃/10, 20, 40, 60 min, WQ
850℃/10, 20, 40, 60 min, WQ
900℃/10, 20, 40, 60 min, WQ
950℃/10, 20, 40, 60 min, WQ
表1  马氏体分解样品的热处理制度
Solution treatmentMedium temperature treatmentsAging treatment
1030℃/2 h, WQAs-quenched700℃/5 h, AC
800℃/10, 20, 40, 60 min, WQ
850℃/10, 20, 40, 60 min,WQ
900℃/20, 40, 60 min, WQ
950℃/20, 40, 60 min, WQ
表2  拉伸性能样品的热处理制度
图2  不同条件中温热处理后Ti65合金中α相变板条的宽度
图3  800℃中温热处理后Ti65合金的XRD谱
图4  不同条件中温热处理后Ti65合金的室温拉伸性能
图5  Ti65合金马氏体分解过程中β相的演化示意图
图6  中温热处理后Ti65合金中α2相形貌的变化
图7  拉伸性能与α相板条厚度的关系
1 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: status and perspective [J]. J. Aeronaut. Mater., 2014, 34(4): 1
1 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
2 Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications [M]. Weinheim: John Wiley & Sons, 2003: 259
3 Banerjee D, Williams J C. Perspectives on titanium science and technology [J]. Acta Mater., 2013, 61(3): 844
doi: 10.1016/j.actamat.2012.10.043
4 Fanning J C. Properties of TIMETAL 555 (Ti-5Al-5Mo-5V-3Cr-0.6Fe) [J]. J. Mater. Eng. Perform., 2005, 14(6): 788
doi: 10.1361/105994905X75628
5 Campo K N, Andrade D R, Opini V C, et al. On the hardenability of Nb-modified metastable beta Ti-5553 alloy [J]. J. Alloys Compd., 2016, 667: 211
doi: 10.1016/j.jallcom.2016.01.142
6 Matsumoto H, Watanabe S, Hanada S. α' Martensite Ti-V-Sn alloys with low Young's modulus and high strength [J]. Mater. Sci. Eng., 2007, 448A(1-2) : 39
7 Qazi J I, Rahim J, Fores F H, et al. Phase transformations in Ti-6Al-4V-xH alloys [J]. Metall. Mater. Trans., 2001, 32A(10) : 2453
8 Qazi J I, Senkov O N, Rahim J, et al. Kinetics of martensite decomposition in Ti-6Al-4V-xH alloys [J]. Mater. Sci. Eng., 2003, 359A(1-2) : 137
9 Wang H, Chao Q, Chen H, et al. Formation of a transition V-rich structure during the α' to α+β phase transformation process in additively manufactured Ti-6Al-4V [J]. Acta Mater., 2022, 235: 118104
doi: 10.1016/j.actamat.2022.118104
10 Barriobero-Vila P, Biancardi Oliveira V, Schwarz S, et al. Tracking the αʺ martensite decomposition during continuous heating of a Ti-6Al-6V-2Sn alloy [J]. Acta Mater., 2017, 135: 132
doi: 10.1016/j.actamat.2017.06.018
11 Zhang T J. Investigation of electron microscopy on the phase transformation of titanium alloy (III): martensitic transformation [J]. Rare Met. Mater. Eng., 1989, (4): 71
11 张廷杰. 钛合金相变的电子显微镜研究(III)-钛合金中的马氏体相变 [J]. 稀有金属材料与工程, 1989, (4): 71
12 Chang H, Zhou L, Zhang T J. Review of solid phase transformation in titanium alloys [J]. Rare Met. Mater. Eng., 2007, 36(9): 1505
12 常 辉, 周 廉, 张廷杰. 钛合金固态相变的研究进展 [J]. 稀有金属材料与工程, 2007, 36(9): 1505
13 Davis R, Flower H M, West D R F. The decomposition of Ti-Mo alloy martensites by nucleation and growth and spinodal mechanisms [J]. Acta Metall., 1979, 27(6): 1041
doi: 10.1016/0001-6160(79)90192-5
14 Mantani Y, Tajima M. Phase transformation of quenched αʺ martensite by aging in Ti-Nb alloys [J]. Mater. Sci. Eng., 2006, 438-440A: 315
15 Gil Mur F X, Rodríguez D, Planell J A. Influence of tempering temperature and time on the α'-Ti-6Al-4V martensite [J]. J. Alloys Compd., 1996, 234(2): 287
doi: 10.1016/0925-8388(95)02057-8
16 Sun F, Li J S, Kou H C, et al. Effect of α' martensite on microstructure refinement after α+β isothermal treatment in a near-α titanium alloy Ti60 [J]. J. Mater. Eng. Perform., 2015, 24(5): 1945
doi: 10.1007/s11665-015-1486-1
17 Wang J Y, Ge Z M, Zhou Y B. Aviation Titanium Alloy [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1985: 137
17 王金友, 葛志明, 周彦邦. 航空用钛合金 [M]. 上海: 上海科学技术出版社, 1985: 137
18 Zhao Y Q, Chen Y N, Zhang X M, et al. Phase Transformation and Heat Treatment of Titanium Alloys [M]. Changsha: Central South University Press, 2012: 115
18 赵永庆, 陈永楠, 张学敏 等. 钛合金相变及热处理 [M]. 长沙: 中南大学出版社, 2012: 115
19 Motyka M, Baran-Sadleja A, Sieniawski J, et al. Decomposition of deformed α'(α″) martensitic phase in Ti-6Al-4V alloy [J]. Mater. Sci. Technol., 2019, 35(3): 260
doi: 10.1080/02670836.2018.1466418
20 Cao S, Chu R K, Zhou X G, et al. Role of martensite decomposition in tensile properties of selective laser melted Ti-6Al-4V [J]. J. Alloys Compd., 2018, 744: 357
doi: 10.1016/j.jallcom.2018.02.111
21 Zhou Y L, Niinomi M, Akahori T. Decomposition of martensite α″ during aging treatments and resulting mechanical properties of Ti-Ta alloys [J]. Mater. Sci. Eng., 2004, 384A(1-2) : 92
22 Sato K, Matsumoto H, Kodaira K, et al. Phase transformation and age-hardening of hexagonal α' martensite in Ti-12mass%V-2mass%Al alloys studied by transmission electron microscopy [J]. J. Alloys Compd., 2010, 506(2): 607
doi: 10.1016/j.jallcom.2010.07.127
23 Lütjering G, Williams J C. Titanium [M]. New York: Springer, 2007: 165
24 Yue K, Liu J R, Zhang H J, et al. Precipitates and alloying elements distribution in near α titanium alloy Ti65 [J]. J. Mater. Sci. Technol., 2020, 36: 91
doi: 10.1016/j.jmst.2019.03.018
25 Ahmed T, Rack H J. Phase transformations during cooling in α+β titanium alloys [J]. Mater. Sci. Eng., 1998, 243A(1) : 206
26 Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23(1): 1
26 赵 亮, 刘建荣, 王清江 等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23(1): 1
27 Lunt D, Busolo T, Xu X, et al. Effect of nanoscale α2 precipitation on strain localisation in a two-phase Ti-alloy [J]. Acta Mater., 2017, 129: 72
doi: 10.1016/j.actamat.2017.02.068
28 Radecka A, Bagot P A J, Martin T L, et al. The formation of ordered clusters in Ti-7Al and Ti-6Al-4V [J]. Acta Mater., 2016, 112: 141
doi: 10.1016/j.actamat.2016.03.080
29 Zhang J, Li D. Preferred precipitation of ordered α2 phase at dislocations and boundaries in near-α titanium alloys [J]. Mater. Sci. Eng., 2003, 341A(1-2) : 229
30 Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of Ti-6Al-4V with a transformed microstructure [J]. Acta Mater., 2001, 49(17): 3565
doi: 10.1016/S1359-6454(01)00236-1
31 Liu J R, Li S X, Li D, et al. Effect of aging on fatigue-crack growth behavior of a high-temperature titanium alloy [J]. Mater. Trans., 2004, 45(5): 1577
doi: 10.2320/matertrans.45.1577
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.