材料研究学报, 2023, 37(12): 907-914 DOI: 10.11901/1005.3093.2022.634

研究论文

缺陷对激光选区熔化316L不锈钢疲劳性能的影响

冯枫, 杨冰,, 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛

西南交通大学 牵引动力国家重点实验室 成都 610031

Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel

FENG Feng, YANG Bing,, CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao

State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China

通讯作者: 杨 冰,研究员,yb@swjtu.edu.cn,研究方向为车辆结构强度及材料疲劳与断裂

责任编辑: 吴岩

收稿日期: 2022-11-29   修回日期: 2023-01-13  

基金资助: 国家自然科学基金(52375159)
四川省国际科技创新合作项目(2022YFH0075)
牵引动力国家重点实验室自主课题(2022TPL-T03)

Corresponding authors: YANG Bing, Tel: 18080053540, E-mail:yb@swjtu.edu.cn

Received: 2022-11-29   Revised: 2023-01-13  

Fund supported: National Natural Science Foundation of China(52375159)
Sichuan Science and Technology Program(2022YFH0075)
Independent Research Project of State Key Laboratory of Traction Power(2022TPL-T03)

作者简介 About authors

冯 枫,男,1997年生,硕士生

摘要

对激光选区熔化的316L不锈钢进行单调拉伸和疲劳实验,根据得到的参考S-N曲线、参考疲劳极限和对缺陷的评估研究未熔合缺陷(LOF缺陷)对疲劳行为的影响,根据断口观测分析了缺陷大小与疲劳极限之间的关系并统计分析了试样切片的缺陷极值,为预测SLM 316L不锈钢的最大缺陷尺寸和疲劳极限提供了偏安全的评估方法。

关键词: 金属材料; 疲劳; 缺陷; 316L不锈钢; 激光选区熔化

Abstract

The metal materials manufactured by laser selective melting technology have better mechanical properties than traditional casting materials and are suitable for the manufacture of various complex parts. However, the defects introduced in the process implementation are the main factors restricting the fatigue properties. Therefore, the mechanical performance of the SLM prepared 316L stainless steels was assessed. The results show that the tensile strength, yield strength, and elongation of 316L stainless steel formed by laser selective melting process are 816.8, 720.4 MPa, and 33.83%, respectively, which are much higher than that of the forged parts. However, it is found that the measured data of fatigue life are much dispersed due to the initiation of cracks on defects in the surface and/or near-surface during fatigue testing. The reference S-N curve of the material was obtained by the maximum likelihood method, and the fatigue limit was predicted to be 259 MPa. At the same time, combined with the √area parameter and the extreme statistical method, the maximum defect and fatigue limit of the material was predicted. The error between the fatigue limit prediction results and the test results is less than 10%, which provides a partial safety estimation method for the safety evaluation of the material.

Keywords: metallic materials; fatigue; defect; 316L stainless steel; selective laser melting

PDF (7972KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

冯枫, 杨冰, 陈东东, 王明猛, 肖守讷, 阳光武, 朱涛. 缺陷对激光选区熔化316L不锈钢疲劳性能的影响[J]. 材料研究学报, 2023, 37(12): 907-914 DOI:10.11901/1005.3093.2022.634

FENG Feng, YANG Bing, CHEN Dongdong, WANG Mingmeng, XIAO Shoune, YANG Guangwu, ZHU Tao. Effect of Defects on High Cycle Fatigue Properties of Selective Laser Melting 316L Stainless Steel[J]. Chinese Journal of Materials Research, 2023, 37(12): 907-914 DOI:10.11901/1005.3093.2022.634

基于离散-堆积原理的增材制造(Additive manufacturing,AM)技术,用挤压、烧结和熔融等方式将原材料完全熔化,再基于计算机模型的轮廓生成合理的扫描路径最终得到实体零件[1~3]。激光选区熔化技术(Selective laser melting,SLM)作为金属增材制造的一种主要技术途径,用高能激光热源将金属粉末快速熔化,再逐层铺粉和快速凝固制备出力学性能优良、致密度极高的实体零件。激光选区熔化技术省时、高效和节省材料,能在短时间内成形具有复杂结构的金属材料[4,5]。SLM零件经历快速熔化、快速凝固、逐线扫描、逐层累加的成形过程,具有一种可分层的精细微观结构。这种结构有利于同时增强机械强度和断裂韧性,但是打印后的零件呈现出显著的各向异性[6~8]。SLM零件的微观组织与传统锻造件不同,在成形过程中产生的制造缺陷和微观结构对疲劳性能有很大的影响。

适于用SLM技术制造的金属材料,主要有铝合金[9,10]、钛合金[11,12]、铁基合金[13]以及镍基合金[14]等。316L不锈钢是一种典型的奥氏体不锈钢,具有优异的耐腐蚀性能和机械性能,广泛应用于汽车工业、航空航天、轨道交通等领域。近年来针对SLM 316L不锈钢开展的研究,大多是工艺参数和后处理工艺对拉伸性能与硬度的影响,对疲劳寿命的研究较少。Liverani等[15]发现,激光功率参数对SLM 316L不锈钢成型件的致密度的影响最大,而打印方向和扫描间距的影响并不明显。研究结果表明,成型件微观结构和力学性能与工艺参数密切相关。余晨帆等[16]研究发现,材料晶粒内的纳米尺度胞状结构有助于提高其强度,其拉伸性能明显优于用传统手段制备的316L不锈钢。Emre等[17]主要研究了热处理温度对SLM 316L不锈钢微观组织、显微硬度和孔隙率的影响。结果表明,在850℃的热处理温度下,熔池形貌消失,能产生均匀的微观结构,硬度和孔隙率也随着热处理温度的升高而降低。Erica等[18]研究了热等静压(HIP)处理和固溶处理对SLM 316L不锈钢力学性能、硬度和微观组织的影响。结果表明,HIP处理并没有明显提高零件的致密度,其伸长率的提高是以降低屈服强度和硬度为代价,固溶处理部分改变了微观结构,其力学性能和硬度处于成型件与HIP件之间。以上研究主要关注材料的微观组织和力学性能,而成形过程中无法避免的打印缺陷也对疲劳寿命有很大的影响,尤其是气孔与未熔合缺陷等[19,20]。因此,有必要进一步了解SLM材料的疲劳行为,并研究加工缺陷对其疲劳寿命的影响。鉴于此,本文对激光选区熔化316L不锈钢进行单调拉伸和疲劳实验,根据其参考S-N曲线和参考疲劳极限评估缺陷并研究未熔合缺陷(LOF缺陷)对疲劳行为的影响,根据断口观测分析缺陷大小与疲劳极限之间的关系并统计分析试样切片的缺陷极值,为预测SLM 316L不锈钢的最大缺陷尺寸估计和疲劳极限提供偏安全的评估方法。

1 实验方法

1.1 实验用材料和试样的制备

实验用316L不锈钢粉末粒径的分布范围为16~60 μm,平均粒径为36 μm(图1),化学成分(质量分数,%)为:Cr 16~18,Ni 12~15,Mo 2~3,Mn<2,Si<1,C<0.03,P<0.03,S<0.03,Fe为余量。

图1

图1   316L不锈钢粉体形貌的SEM照片

Fig.1   SEM images of 316L stainless steel powder (a) low magnification; (b) high magnification


用EP-M300激光选区熔化设备打印试样。该设备搭载的水冷光纤激光器,额定功率为1000 W,波长为1060~1090 nm。打印前先在成形腔内充入Ar气以使氧气的体积分数在3×10-3以下。用Materialise Magics软件将三维数字模型文件切片、修整并导入计算机,然后进行激光增材打印。SLM成形的工艺参数为:激光功率250 W,激光扫描速度850 mm/s,扫描间距0.12 mm,层厚0.05 mm。扫描策略为单向扫描、逐层旋转67°,考虑到材料服役环境下的受力方向采用水平(XY)方向打印。打印完成后取出基板、清理零件表面粉末并从基板上线切割试样。为了研究SLM工艺成形过程产生的缺陷对疲劳性能的影响,针对未经热处理的SLM 316L试样开展研究。

1.2 性能表征

1.2.1 微观组织和显微硬度

用砂纸(400~2000#)打磨金相试样后用粒度为0.5 μm的金刚石研磨膏抛光,使其表面成光滑镜面以致在显微镜下观测不到明显划痕,再采用不锈钢金相腐蚀液腐蚀50 s,暴露其微观组织。用OLYMPUS BX51M光学显微镜和JSM-7800F Prime扫描电子显微镜 (SEM)观察金相试样。用HVS-30型数显维氏硬度计测试试样的硬度,载荷为1 kg,保压时间20 s,测10个不同位置的硬度取其结果的平均值。

1.2.2 拉伸性能

使用INSTRON E10000电子拉扭试验机(图2)在室温环境下进行拉伸试验,拉伸速率为0.5 mm/min,引申计的量程为12.5 mm,试样平行段的尺寸为15 mm×1 mm×2 mm(图3a)。试验前对试样表面进行研磨和抛光,使表面粗糙度降低至0.2 μm以排除表面粗糙度的影响,取3组有效数据的平均值作为力学性能。

图2

图2   INSTRON E10000电子拉扭试验机

Fig.2   INSTRON E10000 electronic tensile torsional testing machine


图3

图3   各种试样的尺寸和SLM成型试样

Fig.3   Various sample sizes and SLM-formed samples(a) dimensions of tensile specimens; (b) dimensions of fatigue specimens; (c) SLM-formed samples (unit: mm)


1.2.3 疲劳性能

使用INSTRON E10000电子拉扭试验机在室温环境下进行疲劳试验,试样尺寸如图3b所示。疲劳试验的加载频率为30 Hz,加载波形为正弦波,应力比R=0.1,试验前对试样的表面进行与拉伸试样相同的处理。为保证数据的可信度在每个应力幅下至少测试2个试样,试样失效或循环周次达到107 cycles时停止试验。用极大似然法拟合得到的S-N曲线,107循环周次对应的应力水平为参考疲劳极限。用SEM观察疲劳断口,以分析试样的疲劳断裂特征。

2 结果和讨论

2.1 微观形貌

图4给出了SLM 316L不锈钢试样堆叠方向与扫描方向的金相组织。激光成形过程中的快速熔化、快速凝固,使金相组织不同于传统的锻造材料。从图4可见,试样表面两种方向上均出现微小孔隙和未熔合缺陷。在不同的加载条件下试样中未熔合的缺陷,成为应力集中点和裂纹起始源。因此,缺陷的随机分布使激光选区熔化零件疲劳性能难以准确预测。从图4a可见,在试样的堆叠方向上呈现边界明确、互相堆叠的鱼鳞状熔池。图4b给出了试样扫描方向的平行激光扫描轨迹。两种方向上微观形貌的不同,决定其具有各向异性[7, 21~23]

图4

图4   SLM 316L不锈钢不同方向的金相组织

Fig.4   OM microstructure of SLM 316L stainless steel in different directions (a) stacking direction; (b) scanning direction


图5所示,通过SEM进一步观察到,SLM 316L不锈钢的微观结构主要由胞状晶和柱状晶组成[22, 23],胞状晶的直径约为0.6~2 μm,胞状晶沿不同方向生长的柱状晶,沿轴向尺寸可达数微米。产生这种精细的亚胞状结构的原因,是在成形过程中过高的冷却速率使熔融金属中出现热梯度。

图5

图5   SLM 316L不锈钢不同方向的扫描电镜照片

Fig.5   SEM images of SLM 316L stainless steel in different directions (a) stacking direction; (b) scanning direction


2.2 拉伸性能

SLM 316L不锈钢的基本力学性能,列于表1。与传统铸造316L不锈钢[24]相比,其抗拉强度和屈服强度均大幅提高,分别提高49.1%和168.8%。在SLM成形中快速熔化和凝固在试样内部产生一定的残余应力,大大降低了材料的延展性(本文的材料延伸率比铸造316L不锈钢下降40.7%),使SLM样件的延伸率比传统铸造件低。因此,在实际应用中需进行热处理工艺以消除残余应力。热处理在一定程度上使抗拉强度和屈服强度降低,但是材料的微观组织更加均匀,使延伸率达到锻造件标准和使其综合性能提高[25]

表1   激光选区熔化316L不锈钢的力学性能

Table 1  Tensile properties of SLM 316L stainless steel with different building directions

Specimen

Tensile stength

/ MPa

Yield strength

/ MPa

Elongation

/ %

SLM 316L816.8720.433.83
Cast 316L [24]54826852

新窗口打开| 下载CSV


2.3 疲劳性能

用极大似然法[26]拟合S-N曲线,结果以如下三参数给出:

S-S0mN=C

式中S为应力水平,N为疲劳寿命,S0、m、C为材料常数。

对上式进行对数变换可得

Y=AX+B

式中Y=lgNX=lg(S-S0),A=lgCB=-m。由疲劳实验数据(SiNi ),i=1,2,3,…,n可计算出XiYi

根据最小二乘法可得到关于参数AB的两个方程,还需要补充反映试验数据拟合程度的参数,即拟合相关系数RXY,定义为

RXY=1-i=1nYi-Yi^2i=1nYi-Y¯2

式中Yi^为试验数据取Xi 时的拟合值,Y¯为数据Yi 的平均值,RXY 最大值为1,该值越接近1表示数据拟合程度越好。

由于在单个试样中出现不同大小和形状的缺陷,无法确定SLM 316L试样的真实疲劳极限。即使试样在某应力水平经历107 cycle 循环仍未断裂,该应力水平也不能定义为试样的疲劳极限。试样的疲劳极限取决于试样中最有害的缺陷,其大小和位置的不同使试样的疲劳试验结果出现很大的分散性,使影响疲劳寿命的关键缺陷在疲劳失效前难以确定[27,28]。后续的断口分析结果表明,最大缺陷尺寸相近的试样其疲劳寿命呈现出良好的S-N曲线分布趋势,且分散性较小,计算出S0AB可得SLM 316L不锈钢的参考S-N曲线(图6)的拟合公式

图6

图6   SLM 316L不锈钢的参考S-N曲线

Fig.6   S-N curve of SLM 316L samples


S-2082.89N=8.69×1011

式(4)可计算参考疲劳极限,结果为259 MPa。

2.4 疲劳断口

观察SLM 316L不锈钢疲劳试样断口的结果表明,多数裂纹从试样表面及近表面的缺陷萌生并扩展,最终使试样断裂。图7给出了最大应力幅为300 MPa时典型试样的断口形貌。由图7a可见,断口可分为疲劳源区、裂纹扩展区和瞬断区三个典型区域;图7b给出了疲劳源区局部图,可见试样表面出现半圆形未熔合缺陷。河流状波纹的指向表明,裂纹从表面的缺陷萌生。在图7c所示的稳定裂纹扩展区可观察到明显的疲劳辉纹,其方向垂直于裂纹的扩展方向。图7d给出了瞬断区,可观测到拉长的缺陷和等轴韧窝形貌,呈现出典型的韧性断裂特征。

图7

图7   SLM 316L的疲劳断口

Fig.7   Fatigue fracture surface of SLM 316L sample (σ=300 MPa, Nf=1.69×106)


断口分析结果表明,试样内部的缺陷种类较多,形状和大小不规则,且其位置随机分布。根据缺陷位置的不同,可将其分为三类:表面缺陷、近表面缺陷和内部缺陷。部分试样中较大的缺陷,使试样的疲劳寿命极短。图8给出了最大应力为270 MPa用于求解参考S-N曲线的某试样和某异常缺陷试样的断口。图8a中的试样在其近表面的缺陷处产生应力集中,裂纹由缺陷处迅速扩展至表面最终导致断裂。图8b中试样的断裂在相邻表面未熔合缺陷萌生,缺陷间的相互作用增大了缺陷源的面积,相邻表面缺陷的尺寸明显大于近表面缺陷的尺寸。这减少了试样的寿命,使该试样的疲劳寿命仅为1.2×105 cycle,与同应力水平试样相比其寿命减少近27倍。这表明,缺陷的尺寸是影响疲劳性能的决定性因素。

图8

图8   在应力幅相同的条件下两种典型试样的疲劳源区

Fig.8   Fatigue source areas of different specimens under the same stress amplitude:(a) σ= 270 MPa, Nf= 3.2×106; (b) σ= 270 MPa, Nf=1.2×105


2.5 缺陷参数的极值统计分析

可用缺陷面积参数area(缺陷在垂直于主应力平面上投影面积的平方根)描述缺陷尺寸特征[29],以探究缺陷与疲劳强度之间的关系。如图9所示,对于不规则缺陷以及近表面缺陷,由于凹角点处的应力强度因子极高,初始疲劳裂纹扩展从凹角点处开始。随着裂纹的增大其前缘的形状变圆,应力强度因子降低。当应力强度因子幅ΔK超过疲劳裂纹扩展门槛值ΔKth时,裂纹继续扩展直至失效。应力强度因子幅ΔK低于疲劳裂纹扩展门槛值ΔKth时则裂纹停止扩展,成为非扩展裂纹。因此,对于不规则形状的缺陷,需要考虑的是其有效尺寸(虚线)而不是实际尺寸。

图9

图9   不规则形状缺陷的有效尺寸[29]

Fig.9   Estimation method for the effective size of irregularly shaped defects and defects near surface.

(a)irregularly shaped internal defect; (b)irregularly shaped surface defect; (c)irregularly shaped internal defect in interaction with surface; (d)interacting adjacent two surface defects


疲劳断裂在最大缺陷萌生,而用无损检测方法获取材料内部缺陷特征成本较高且难度较大。因此,本研究沿垂直最大主应力方向切割试样夹持端任意位置,得到15个SLM 316L不锈钢试样切片用于统计材料内部缺陷的尺寸。用2000#砂纸打磨试样切片并用光镜统计缺陷的尺寸,试样切片的局部光学显微镜图像如图10所示。由于缺陷的分布和试样切片位置具有随机性,试样切片中的最大缺陷尺寸并不代表真正的最大缺陷尺寸,而是用极值统计分析方法预估试样中可能出现的最大缺陷尺寸。

图10

图10   试样切片的局部光学显微镜图像

Fig.10   Local OM image of sample section


试样切片中缺陷尺寸的极大值满足Gumbel分布函数[30]

Gx=exp-exp-x-λ/α

式中G(x)为变量x小于等于最大缺陷尺寸xi 的概率,λ为位置参数,α为尺寸参数。将从单个试样切片中获取的最大缺陷投影面积的平方根area定义为一个样本,为area1。重复n次测量并将结果从小到大排列,则有area1area2…≤areai…≤arean。由此可得第i个样本的累积概率

Gareai=i/(n+1)=                                                  
                     exp-exp-areai-λ/α

式中i=1,2,…,i,…nareai为按照从小到大排列的第i个试样切片的最大缺陷投影面积的平方根。

式(6)两边的对数并化简,可得

areai=α-ln-lnGareai+λ

用最小二乘法的线性拟合关系,即可确定位置参数λ和尺寸参数α。当G(area)取99.9%时,认为对应的area值为试样内部可能出现的最大缺陷投影面积的平方根。试样切片的缺陷极值统计分析结果,如图11所示。极值统计得到的缺陷投影面积参数area的估测值为250 μm,绝大多数源于表面缺陷导致疲劳试样断裂。断口观测得到最大缺陷投影面积参数area约为212 μm,小于极值统计的缺陷投影面积参数估测值250 μm。除去人工测量等因素的影响,二者的差异在可接受范围内。这表明,极值统计方法的估测结果具有合理性,且有利于控制激光成型零件的质量。

图11

图11   试样切片缺陷极值的统计分析

Fig.11   Statistical analysis of defect extremum values of sample sections


2.6 基于极值统计分析结果预测疲劳极限

由于缺陷对材料疲劳寿命的影响十分显著,越来越多的学者试图建立缺陷尺寸与疲劳性能的联系。Murakami[29,31]基于疲劳极限与area参数、材料硬度之间的关系,提出一种预估疲劳极限的经验公式

σmax=CHV+120area1/6×1-R-α
α=0.226+HV×10-4

式中σmax为疲劳极限对应的最大应力,HV为显微硬度;通过硬度测量得到SLM 316L不锈钢试样的硬度为226HV;area为有效缺陷面积的平方根;C为位置系数,当缺陷位于表面、近表面和内部时,取值分别为1.43、1.41和1.56; R为疲劳试验的应力比。

将缺陷的极值统计结果带入 式(8),结果表明基于表面缺陷、近表面缺陷和内部缺陷的预测疲劳极限分别为240、237、262 MPa,均处于疲劳试验中参考疲劳极限的±10%误差区域内。这表明,该经验公式适于预估SLM 316L材料的疲劳极限和评价安全服役性能,且其准确性较高。同时,实验结果证实,疲劳裂纹大多萌生于表面缺陷与近表面缺陷,而两者的预测结果均低于实验结果(259 MPa)。因此,从安全评估角度,该预测方法为零件设计留出了足够的裕量。

3 结论

(1) SLM 316L不锈钢内有类型多样、位置与大小分布随机的不规则缺陷,其微观形貌与传统锻造材料不同,呈现出由胞状晶与柱状晶构成的亚细胞结构,使其抗拉强度和屈服强度大大提高。

(2) 随机分布的缺陷使疲劳寿命出现较大的分散性,因此必须考虑缺陷尺寸对疲劳寿命的影响。根据断裂力学,area参数能较好描述有效缺陷尺寸,对试样疲劳性能的影响大于实际的缺陷尺寸的影响。基于极值统计方法得到的最大缺陷投影面积参数估测值与断口观测结果相近,统计结果偏安全。

(3) 使用Murakami提出的经验公式预测的三种不同位置缺陷的疲劳极限均与实验结果接近,误差小于10%且预测值更加保守,表明此公式适于预测SLM 316L不锈钢材料的疲劳极限。

参考文献

Roschli A, Gaul K T, Boulger A M, et al.

Designing for big area additive manufacturing

[J]. Addit. Manuf., 2019, 25: 275

DOI      [本文引用: 1]

Additive manufacturing (AM), more commonly referred to as 3D printing, is revolutionizing the manufacturing industry. With any new technology comes new rules and guidelines for the optimal use of said technology. Big Area Additive Manufacturing (BAAM), developed by Cincinnati Incorporated and Oak Ridge National Laboratory's Manufacturing Demonstration Facility, requires a host of new design parameters compared to small-scale 3D printing to create large-scale parts. However, BAAM also creates new possibilities in material testing and various applications in the manufacturing industry. Most of the design constraints of small-scale polymer 3D printers still apply to BAAM. Beyond those constraints, new rules and limitations exist because BAAM's large-scale system significantly changes the thermal properties associated with small-scale AM. This work details both physical and software-related design considerations for additive manufacturing. After reading this guide, one will have a better understanding of slicing software's capabilities and limitations, different physical characteristics of design and how to apply them appropriately for AM, and how to take the inherent nature of AM into consideration during the design process.

Liu Z F, Huang Y D, Yang X, et al.

Preparation of graphene/Ni-Cu alloy composite on Ni-Cu alloy template made by selective laser melting

[J]. Chin. J. Mater. Res., 2021, 35(1): 1

刘主峰, 黄耀东, 杨 潇 .

基于激光选区熔化成形Ni-Cu合金模板的Ni-Cu-石墨烯复合材料的制备

[J]. 材料研究学报, 2021, 35(1): 1

Liu G, Zhang X F, Chen X L, et al.

Additive manufacturing of structural materials

[J]. Mater. Sci. Eng., 2021, 145R: 100596

[本文引用: 1]

Dong Z H, Kang H W, Xie Y J, et al.

Effect of Cr-content on microstructure of 12CrNi2 alloy steel prepared by laser additive manufacturing

[J]. Chin. J. Mater. Res., 2018, 32(11): 827

[本文引用: 1]

董志宏, 亢红伟, 谢玉江 .

Cr含量对激光增材制造12CrNi2合金钢的组织结构的影响

[J]. 材料研究学报, 2018, 32(11): 827

[本文引用: 1]

Tucho W M, Lysne V H, Austbø H, et al.

Investigation of effects of process parameters on microstructure and hardness of SLM manufactured SS316L

[J]. J. Alloys Compd., 2018, 740: 910

DOI      URL     [本文引用: 1]

Zong X W, Gao Q, Zhou H Z, et al.

Effects of bulk laser energy density on anisotropy of selective laser sintered 316L stainless steel

[J]. Chin. J. Lasers, 2019, 46: 0502003

[本文引用: 1]

宗学文, 高 倩, 周宏志 .

体激光能量密度对选区激光熔化316L不锈钢各向异性的影响

[J]. 中国激光, 2019, 46: 0502003

[本文引用: 1]

Charmi A, Falkenberg R, Ávila L, et al.

Mechanical anisotropy of additively manufactured stainless steel 316L: an experimental and numerical study

[J]. Mater. Sci. Eng., 2021, 799A: 140154

[本文引用: 1]

Deev A A, Kuznetcov P A, Petrov S N.

Anisotropy of mechanical properties and its correlation with the structure of the stainless steel 316L produced by the SLM method

[J]. Phys. Procedia, 2016, 83: 789

DOI      URL     [本文引用: 1]

Roth C C, Tancogne-Dejean T, Mohr D.

Plasticity and fracture of cast and SLM AlSi10Mg: high-throughput testing and modeling

[J]. Addit. Manuf., 2021, 43: 101998

[本文引用: 1]

Gupta M K, Singla A K, Ji H S, et al.

Impact of layer rotation on micro-structure, grain size, surface integrity and mechanical behaviour of SLM Al-Si-10Mg alloy

[J]. J. Mater. Res. Technol., 2020, 9(5): 9506

DOI      URL     [本文引用: 1]

Diao W, Du L, Wang Y B, et al.

Anisotropy of Ti6Al4V alloy fabricated by selective laser melting

[J]. Chin. J. Mater. Res., 2022, 36(3): 231

DOI      [本文引用: 1]

The microstructure, texture and properties of samples intercepted at different deposition heights and directions of the Ti6Al4V alloy fabricated by selective laser melting were investigated by metallographic analysis, XRD and tensile test. The results show that the vertical section parallel to the building direction presents microstructure of columnar-like prior-β grains filled with acicular martensite, while the cross section perpendicular to the building direction presents a block-like microstructure. The texture for the later cross section is stronger than that for the former one. The size of the columnar prior-β grains influences the mechanical properties along the building direction of the Ti6Al4V alloy fabricated by selective laser melting. The tensile strength and yield strength decrease first and then increase with the increase of deposition height, while the elongation variation has an opposite trend. The strength and plasticity of samples perpendicular to the building direction is higher than those parallel to the building direction due to the formed defects related with the weaker-texture and poor-fusion.

刁 威, 杜 磊, 汪彦博 .

选区激光熔化Ti6Al4V合金的各向异性

[J]. 材料研究学报, 2022, 36(3): 231

[本文引用: 1]

Agius D, Kourousis K I, Wallbrink C, et al.

Cyclic plasticity and microstructure of as-built SLM Ti-6Al-4V: the effect of build orientation

[J]. Mater. Sci. Eng., 2017, 701A: 85

[本文引用: 1]

Qin F, Shi Q, Liu X, et al.

Effect of heat treatment on microstructure and mechanical properties of selective laser melted 17-4PH stainless steel

[J]. Chin. J. Mater. Res., 2021, 35(8): 606

DOI      [本文引用: 1]

The laser selectively melted 17-4PH stainless steel was subjected to different post-heat treatment, i.e. vacuum heat treatment (1040℃/2 h+water quenching and 480℃/4 h+water quenching), hot isostatic pressing heat treatment (1040℃-150 MPa/2 h HIP +gas rapid cooling and vacuum 480℃-100 MPa/4 h+GRC) and combined heat treatment (1040℃-150 MPa/2 h HIP+GRC and vacuum 480℃/4 h+water quenching). Afterwards, the microstructure and mechanical performance of the laser melted steels were characterized by means of optical microscopy, electron scanning microscopy, microhardness tester and universal tensile tester. The results show that the vacuum heat treatment can reduce the inner pore size down to 3~7 μm. After hot isostatic pressing treatment, all pores almost closed and the density is almost of the theoretical value of the laser deposited 17-4PH stainless stee. After heat treatment, the 17-4PH stainless steel composed of tempered- and quenched-martensite, and the precipitates with size of 100~150 nm dispersed in grains. Vacuum heat treatment + water quenching can significantly increase the tensile strength and hardness of the deposited 17-4PH stainless steel to 1300 MPa and 448.5HV, respectively. Hot isostatic pressing heat treatment can significantly increase the tensile strength of the deposited 17-4PH stainless steel, at the same time, its elongation at break reaches 22.4%.The fracture morphology of the as deposited 17-4PH SS and the one after hot isostatic pressing heat treatment was typical ductile fracture, and the dimples of hot isostatic pressing heat treatment ones were larger in size and deeper in depth. The fracture morphologies of the deposited 17-4PH SS after vacuum heat treatment and combined heat treatment have the characteristics of partial brittle fracture and emergence of a few cracks, whilst who's plasticity decreases slightly, in comparison with that of the as deposited ones.

秦 奉, 施 麒, 刘 辛 .

热处理对选区激光熔化17-4PH不锈钢力学性能的影响

[J]. 材料研究学报, 2021, 35(8): 606

[本文引用: 1]

Zhang Y J, Wang H B, Song X Y, et al.

Preparation and performance of spherical Ni powder for SLM processing

[J]. Acta Metall. Sin., 2018, 54(12): 1833

DOI      [本文引用: 1]

3D printing has attracted increasing interests in the field of metallic materials as it can effectively shorten the production cycle and create parts with complex shapes, which can hardly be produced by traditional methods. However, the gas atomization, as the mainstream method of preparing metal and alloy powders to meet the requirements of the processing of selective laser melting (SLM) at present, still has some limitations, such as hollow and/or satellite balls in the powder. This influences directly the density and performance of the printing parts. Moreover, the laser absorption in the smooth surface of powder particle is generally less than 10% in the laser processing, which hinders rapid heating of the powder. It has been found that the material can obtain multiple absorption of laser energy by increasing the surface roughness of powder particles, which can effectively improve the laser absorption rate and is beneficial to get the dense printing parts. Based on this, a novel method combining low temperature spray-drying with heat treatment was developed to prepare Ni powder with high purity, good sphericity, high flowability and narrow particle size distribution. The microstructure and laser absorptivity of the prepared Ni powder were compared with those of the commercial Ni powder prepared by gas atomization, and their influences on the microstructure and properties of the 3D printed bulk materials were investigated. It is found that the laser absorptivity of the Ni powder prepared by spray-drying is more than 2 times as high as that of the commercial Ni powder. This leads to a wider melting channel, smaller surface tension and liquid-bridging force between particles in the printing process. As a result, the spheroidization phenomenon occurred on the surface of the printed bulk material can be avoided by the use of the spray-dried powder, and the relative density is achieved as 99.2% at the as-printed state. In the microstructure of the printed bulk material, in addition to the cellular crystals, there are a number of fine columnar crystals, grown across the interlaminar boundaries, which is favorable for a high bonding strength between the interlayers.

张亚娟, 王海滨, 宋晓艳 .

SLM球形Ni粉的制备与打印工艺性能

[J]. 金属学报, 2018, 54(12): 1833

DOI      [本文引用: 1]

针对选区激光熔化(SLM)的技术特点,采用低温喷雾干燥与热处理相结合的新方法,制备得到了物相纯净、球形度高、流动性好且粒径分布窄的球形Ni粉。比较分析了喷雾干燥法制备的Ni粉和气雾化法生产的商业化Ni粉的显微组织和激光吸收率及其对3D打印件组织和性能的影响。结果发现,喷雾干燥法制备Ni粉的激光吸收率是气雾化法生产Ni粉的2倍以上;打印过程中形成更宽的熔道,且颗粒熔化后表面张力和颗粒间液桥力均较小,大大减少了金属粉末打印中极易出现的表面球化现象。喷雾干燥法制备Ni粉打印件的相对密度达到99.2%,其显微组织由细小的柱状晶和胞状晶构成,且柱状晶穿过层间边界生长,使打印件具有致密的层间结合。

Liverani E, Toschi S, Ceschini L, et al.

Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel

[J]. J. Mater. Process. Technol., 2017, 249: 255

DOI      URL     [本文引用: 1]

Yu C F, Zhao C C, Zhang Z F, et al.

Tensile properties of selective laser melted 316L stainless steel

[J]. Acta Metall. Sin., 2020, 56(5): 683

DOI      [本文引用: 1]

Selective laser melting (SLM), as the most common additive manufacturing (AM) method, is capable of manufacturing metallic components with complex shape layer by layer. Compared with conventional manufacturing technologies such as casting or forging, the SLM technology has the advantages of high degree accuracy, high material utilization rate and environmentally friendly, and has attracted great attention in the fields of aerospace, nuclear power and medicine. The 316L austenitic stainless steel is widely used in the industrial field because of the excellent corrosion resistance and plasticity. It is also one of the commonly used material systems for SLM. In this work, the tensile properties and fracture mechanism of 316L stainless steel fabricated via SLM technology were investigated. The microstructure of the SLMed 316L specimens after tensile fracture was characterized and analyzed. The results show that the SLMed 316L stainless steel has a relatively desirable combination of strength and ductility, and its tensile performance is obviously better than that of 316L stainless steel prepared by traditional methods. The nanometer-scale cell structure inside the grain contributes to the improvement of strength. Deformation twins were observed in the SLMed 316L stainless steel after tensile test. The appearance of twins is oriented-dependent, and it is easy to occur in the grain with the direction near <110>-<111>.

余晨帆, 赵聪聪, 张哲峰 .

选区激光熔化316L不锈钢的拉伸性能

[J]. 金属学报, 2020, 56(5): 683

DOI      [本文引用: 1]

对选区激光熔化(selective laser melting,SLM) 316L不锈钢的拉伸性能及断裂机制进行了研究,并对拉伸断裂后的试样进行显微组织表征与分析,探究了拉伸变形过程中微观组织的演化规律。结果表明:采用选区激光熔化技术制备的316L不锈钢具有较好的强塑性匹配,其中晶粒内部纳米尺度胞状结构有助于强度的提升;其拉伸性能明显优于传统手段制备的316L不锈钢。选区激光熔化316L不锈钢在拉伸过程中奥氏体晶粒内部产生形变孪晶,并且形变孪晶的出现存在取向相关,在取向接近&lt;001&gt;的晶粒中不易出现,而在取向接近&lt;110&gt;-&lt;111&gt;的晶粒中较易出现。

Tascioglu E, Karabulut Y, Kaynak Y.

Influence of heat treatment temperature on the microstructural, mechanical, and wear behavior of 316L stainless steel fabricated by laser powder bed additive manufacturing

[J]. Int. J. Adv. Manuf. Technol., 2020, 107(5-6): 1947

DOI      [本文引用: 1]

Liverani E, Lutey A H A, Ascari A, et al.

The effects of hot isostatic pressing (HIP) and solubilization heat treatment on the density, mechanical properties, and microstructure of austenitic stainless steel parts produced by selective laser melting (SLM)

[J]. Int. J. Adv. Manuf. Technol., 2020, 107(1-2): 109

DOI      [本文引用: 1]

Smith T R, Sugar J D, Schoenung J M, et al.

Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel

[J]. Mater. Sci. Eng., 2019, 765A: 138268

[本文引用: 1]

Kumar P, Jayaraj R, Suryawanshi J, et al.

Fatigue strength of additively manufactured 316L austenitic stainless steel

[J]. Acta Mater., 2020, 199: 225

DOI      URL     [本文引用: 1]

Kale A B, Singh J, Kim B K, et al.

Effect of initial microstructure on the deformation heterogeneities of 316L stainless steels fabricated by selective laser melting processing

[J]. J. Mater. Res. Technol., 2020, 9(4): 8867

DOI      URL     [本文引用: 1]

Dryepondt S, Nandwana P, Fernandez-Zelaia P, et al.

Microstructure and high temperature tensile properties of 316L fabricated by laser powder-bed fusion

[J]. Addit. Manuf., 2021, 37: 101723

[本文引用: 1]

Song Y N, Sun Q D, Guo K, et al.

Effect of scanning strategies on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting

[J]. Mater. Sci. Eng., 2020, 793A: 139879

[本文引用: 2]

Meng Q, La P Q, Li H, et al.

Influence of Al content on microstructure and properties of casting 316L stainless steel

[J]. Hot Work. Technol., 2016, 45(10): 64

[本文引用: 2]

孟 倩, 喇培清, 李 恒 .

铝含量对铸造316L不锈钢组织和性能的影响

[J]. 热加工工艺, 2016, 45(10): 64

[本文引用: 2]

Cheng L Y, Zhu X G, Liu Z W, et al.

Effect of heat treatment on microstructure and mechanical properties of 316L stainless steel prepared by selective laser melting

[J]. Trans. Mater. Heat Treat., 2020, 41(7): 80

[本文引用: 1]

程灵钰, 朱小刚, 刘正武 .

热处理对激光选区熔化成形316L不锈钢组织和力学性能的影响

[J]. 材料热处理学报, 2020, 41(7): 80

DOI      [本文引用: 1]

采用激光选区熔化成形工艺制备了316L不锈钢试样,并对其分别进行了400℃&#215;4 h的退火处理以及1020℃&#215;0.5 h的固溶处理。采用扫描电镜、显微硬度计及电子万能试验机等研究了直接成形态、退火态和固溶态试样的微观组织、拉伸性能、布氏硬度和夏比冲击吸收能量。结果表明:直接成形态试样经400℃&#215;4 h退火后,组织变化不明显,抗拉强度、伸长率、布氏硬度及夏比冲击吸收能量都略有提高;直接成形态经1020℃&#215;0.5 h固溶处理后,熔池搭接边界发生溶解,层层搭接边界消失,抗拉强度、屈服强度、布氏硬度分别降低了8.8%、27.2%、13.7%,伸长率、夏比冲击吸收能量分别提高了43%和25%。与其它两种状态相比,固溶状态下,试样的性能更稳定,强度与韧性的组合较好。

Ling J, Pan J.

A maximum likelihood method for estimating P-S-N curves

[J]. Int. J. Fatigue, 1997, 19(5): 415

DOI      URL     [本文引用: 1]

Beretta S, Romano S.

A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes

[J]. Inter. J. Fatigue, 2017, 94: 178

DOI      URL     [本文引用: 1]

Edwards P, Ramulu M.

Fatigue performance evaluation of selective laser melted Ti-6Al-4V

[J]. Mater. Sci. Eng., 2014, 598A: 327

[本文引用: 1]

Murakami Y.

Material defects as the basis of fatigue design

[J]. Int. J. Fatigue, 2012, 41: 2

DOI      URL     [本文引用: 3]

Romano S, Brandão A, Gumpinger J, et al.

Qualification of AM parts: extreme value statistics applied to tomographic measurements

[J]. Mater. Des., 2017, 131: 32

DOI      URL     [本文引用: 1]

Murakami Y, Endo M.

Effects of defects, inclusions and inhomogeneities on fatigue strength

[J]. Int. J. Fatigue, 1994, 16(3): 163

DOI      URL     [本文引用: 1]

/