Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (4): 281-290    DOI: 10.11901/1005.3093.2022.090
  研究论文 本期目录 | 过刊浏览 |
Zr55Cu30Al10Ni5 块体金属玻璃的成分优化设计及其晶化行为
朱雪冬1, 张爽1(), 邹存磊1, 刘林根2, 朱智浩2, 万鹏3, 董闯1,2
1.大连交通大学材料科学与工程学院 大连 116028
2.大连理工大学 三束材料改性教育部重点实验室 大连 116024
3.佛山市顺德区美的电热电器制造有限公司 佛山 528300
Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior
ZHU Xuedong1, ZHANG Shuang1(), ZOU Cunlei1, LIU Lingen2, ZHU Zhihao2, WAN Peng3, DONG Chuang1,2
1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
3.Foshan Shunde Midea Electric Heating Appliance Manufacturing Co. Ltd., Foshan 528300, China
引用本文:

朱雪冬, 张爽, 邹存磊, 刘林根, 朱智浩, 万鹏, 董闯. Zr55Cu30Al10Ni5 块体金属玻璃的成分优化设计及其晶化行为[J]. 材料研究学报, 2023, 37(4): 281-290.
Xuedong ZHU, Shuang ZHANG, Cunlei ZOU, Lingen LIU, Zhihao ZHU, Peng WAN, Chuang DONG. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. Chinese Journal of Materials Research, 2023, 37(4): 281-290.

全文: PDF(8920 KB)   HTML
摘要: 

参照Zr55Cu30Al10Ni5合金的成分并应用团簇加连接原子模型,设计具有高玻璃形成能力的Zr-Cu-Al-Ni体系成分。在Zr-Cu-Al-Ni四元体系中,先定出两个与金属玻璃形成相关的晶化相CuZr2和CuZr,其中的局域结构可分别用团簇表述为[Cu-Zr8Cu4]和[Cu-Zr8Cu6],然后应用双团簇模型将这两个团簇按照1∶1的配比构建双团簇式,连接原子个数为2或4或6,由此确定总原子个数为30或32或34,进而选择双团簇式原子总数为32设计出最接近Zr55Cu30Al10Ni5合金的四元块体金属玻璃成分Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3。这种合金玻璃的Trg值可达0.6,晶化激活能为334.138 kJ/mol,均略高于参照合金Zr55Cu30Al10Ni5,表明其具有更高的玻璃形成能力。

关键词 金属材料成分优化团簇加连接原子模型玻璃形成能力块体金属玻璃晶化行为    
Abstract

According to the principle of cluster-plus-glue-atom model, the composition of a novel Zr-Cu-Al-Ni alloy with glass formation ability was designed by taking the alloy Zr55Cu30Al10Ni5 as reference. In the quaternary Zr-Cu-Al-Ni system, two crystallization phases CuZr2 and CuZr related with amorphous formation were firstly identified, the local structures of these two clusters can be expressed as [Cu-Zr8Cu4] and [Cu-Zr8Cu6] respectively; then, by combining these two clusters in equal proportion while coupling with the number of glue atoms 2, 4, or 6, the dual-cluster formulas for total atom number of 30, 32, or 34 respectively may be constructed by means of the dual-cluster model. Furthermore, according to dual- cluster formula of the total number of atoms of 32, a quaternary alloy with composition Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3 was tentatively designed, which is closest to the reference Zr55Cu30Al10Ni5. The glass formation ability of this alloy was tested experimentally. The results show that its Trg reaches 0.6 and its crystallization activation energy is 334.138 kJ/mol, which are all slightly higher than that of the reference alloy, indicating that the designed alloy has a higher glass formation ability.

Key wordsmetallic materials    composition optimization    cluster-plus-glue-atom model    glass formation ability    bulk metallic glasses    crystallization behavior
收稿日期: 2022-02-07     
ZTFLH:  TG139.8  
基金资助:国家自然科学基金(52101127);国家自然科学基金(51901033);辽宁省自然科学基金(2020-BS-208);辽宁省自然科学基金(2020-BS-207);大连理工大学三束材料改性教育部重点实验室开放课题(KF2006);顺德区科技计划(201911220001)
作者简介: 朱雪冬,女,1997年生,硕士生
Phase name
CuZr2
Structure type
MoSi2
Pearson symbol
tI6
Space group
I4/mmm
No.139
a=0.32204(4) nmc=1.11832(6) nm
Cu2a4/mmmx=0y=0z =0Occ.=1
Zr4e4mmx=0y=0z =0.34Occ.=1
表1  CuZr2相的晶体结构信息[22]
图1  CuZr2相中的两种团簇
Phase name
CuZr
Structure type
ClCs
Pearson symbol
cP2
Space group
Pm3¯m
No.221
a=0.32620(5) nm
Cu1am3¯mx=0y=0z=0Occ.=1
Zr1bm3¯mx=1/2y=1/2z=1/2Occ.=1
表2  CuZr相的晶体结构信息[22]
图2  CuZr相中的两种团簇
图3  尺寸为5 mm的Zr17Cu10Al3Ni2块体金属玻璃的X射线衍射谱
图4  Zr17Cu10Al3Ni2 BMG能谱面扫分析
ElementLine typeConcentration / mol·L-1Mass fraction/%Atomic fraction/%
AlK1.583.248.89
NiK3.035.286.67
CuL9.0228.4833.24
ZrL27.8563.0051.20
Total100.00100.00
表3  Zr17Cu10Al3Ni2 面扫描能谱成分
图5  Zr17Cu10Al3Ni2 BMG 微观组织
ElementLine type

Concentration

/ mol·L-1

Mass fraction /%

Atomic fraction

/%

AlK3.466.9118.04
NiK1.863.313.98
CuL8.2025.5528.35
ZrL27.9464.2349.63
Total100.00100.00
表4  析出晶化相对应的成分表
图6  Zr17Cu10Al3Ni2块体金属玻璃的DSC、DTA曲线(DSC的升温速率为10 K/min,DTA为恒速度升温)
图7  Zr17Cu10Al3Ni2大块金属玻璃在不同升温速率下的DSC曲线
图8  Zr17Cu10Al3Ni2大块金属玻璃在不同升温速率下的DTA曲线
图9  Zr17Cu10Al3Ni2大块金属玻璃试样的Kissinger曲线

Heating rates

/K·min-1

Tg

/K

Tx

/K

ΔTx

/K

Tp

/K

Tm

/K

Tl

/K

Trg
571076050769113811650.6
1071577358778114211730.6
2072378461787114311930.6
3072679064793114712080.6
4072779468798114812100.6
表5  不同升温速率下Zr17Cu10Al3Ni2BMG样品的热学参数
图10  在800 K热处理保温1 h后几乎完全晶化的Zr17Cu10Al3Ni2的X射线衍射谱
图11  退火态Zr17Cu10Al3Ni2的能谱面扫分析
图12  退火态Zr17Cu10Al3Ni2 BMG 的微观组织图
PointCuZrAlNi
122.8662.737.916.50
223.0661.148.757.05
328.5449.3618.283.83
432.3752.278.486.88
表6  试样的定点EDS分析结果
1 Wang W H. A brief history of metallic glasses[J]. Physics, 2011, 40: 701
1 汪卫华. 金属玻璃研究简史[J]. 物理, 2011, 40: 701
2 Chen H S. Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505
doi: 10.1016/0001-6160(74)90112-6
3 Inoue A, Zhang T. Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method[J]. Mater. Trans., JIM, 1996, 37: 185
4 Wang H J, Chen S S, Hu Q, et al. The glass-forming ability and die casting performance of Zr-based bulk metallic glasses[J]. Mater. Sci. Technol., 2020, 28(5): 38
4 王浩杰, 陈双双, 胡 强 等. Zr基块体非晶合金玻璃形成能力与压铸成型性能研究[J]. 材料科学与工艺, 2020, 28(5): 38
5 Turnbull D. Under what conditions can a glass be formed?[J]. Contemp. Phys., 1969, 10: 473
doi: 10.1080/00107516908204405
6 Lu Z P, Liu C T. A new glass-forming ability criterion for bulk metallic glasses[J]. Acta Mater., 2002, 50: 3501
doi: 10.1016/S1359-6454(02)00166-0
7 Wu Z F. Thermal analysis kinetics and its application in bulk amorphous alloy[J]. Mater. Rev., 2011, 25(18): 262
7 吴志方. 热分析动力学及其在大块非晶合金研究中的应用[J]. 材料导报, 2011, 25(18): 262
8 Gao Y L, Shen J, Sun J F, et al. Crystallization behavior of ZrAlNiCu bulk metallic glass with wide supercooled liquid region[J]. Mater. Lett., 2003, 57: 1894
doi: 10.1016/S0167-577X(02)01096-0
9 Yavari A R, Uriarte J L, Tousimi K, et al. In-situ detection of the onset crystallisation of Zr55Cu30Al10Ni5 from the bulk glass and the liquid states using synchrotron radiation[J]. Mater. Sci. Forum, 1999, 307: 17
doi: 10.4028/www.scientific.net/MSF.307
10 Zhang Q S, Deng Y F, He L L, et al. Isothermal nanocrystallization of Zr55Al10Ni5-Cu30 bulk amorphous alloy near the glass transition temperature[J]. Acta Metall. Sin., 2003, 39: 301
10 张庆生, 邓玉福, 贺连龙 等. Zr55Al10Ni5Cu30块状非晶合金靠近玻璃转变点的等温纳米晶化[J]. 金属学报, 2003, 39: 301
11 De Oliveira M F, Botta F W J, Kaufman M J, et al. Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen[J]. J. Non-Cryst. Solids, 2002, 304: 51
doi: 10.1016/S0022-3093(02)01003-7
12 Hu Q, Lin X, Yang G L, et al. Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions[J]. Acta Metall. Sin., 2012, 48: 1467
doi: 10.3724/SP.J.1037.2012.00433
12 胡 桥, 林 鑫, 杨高林 等. 不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为[J]. 金属学报, 2012, 48: 1467
13 Wu Z F. Effect of differential thermal analysis experimental condition on crystallization behavior of bulk amorphous alloy Zr55Cu30Al10Ni5 [J]. Hot Work. Technol., 2013, 42(10): 106
13 吴志方. 差热分析实验条件对大块非晶合金Zr55Cu30Al10Ni5晶化行为的影响[J]. 热加工工艺, 2013, 42(10): 106
14 Arias D, Abriata J P. Cu-Zr (copper-zirconium)[J]. J. Phase Equilib., 1990, 11: 452
doi: 10.1007/BF02898260
15 Sakata M, Cowlam N, Davies H A. Chemical short-range order in liquid and amorphous Cu66Ti34 alloys[J]. J. Phys., 1981, 11F: L157
16 Dong C, Wang Q, Qiang J B, et al. From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys., 2007, 40D: R273
17 Dong C, Wang Z J, Zhang S, et al. Review of structural models for the compositional interpretation of metallic glasses[J]. Int. Mater. Rev., 2020, 65: 286
doi: 10.1080/09506608.2019.1638581
18 Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model[J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
19 Geng Y X, Wang Y M, Qiang J B, et al. Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys[J]. Acta Metall. Sin., 2016, 52: 1459
doi: 10.11900/0412.1961.2016.00033
19 耿遥祥, 王英敏, 羌建兵 等. Fe-B-Si-Nb块体非晶合金的成分设计与优化[J]. 金属学报, 2016, 52: 1459
doi: 10.11900/0412.1961.2016.00033
20 Zhang S, Dong D D, Wang Z J, et al. Spherical periodicity as structural homology of crystalline and amorphous states[J]. Sci. China Mater., 2018, 61: 409
doi: 10.1007/s40843-017-9161-4
21 Wang Z J, Dong D D, Zhang S. Characteristics of cluster formulas for binary bulk metallic glasses[J]. J. Alloys Compd., 2016, 654: 340
doi: 10.1016/j.jallcom.2015.08.244
22 Pierre V. Pearson's handbook desk edition[J]. Crystallogr. Data Intermet Phases., 1997, 1: 2
23 Köster U, Herold U. Crystallization of metallic glasses[A]. GüntherodtHJ, BeckH. Glassy Metals I[M]. Berlin Heidelberg: Springer, 1981: 225
24 Kneller E, Khan Y, Gorres U. ChemInform abstract: the alloy system copper-zirconium. Part 1. phase diagram and structural relations[J]. Chem. Informationsdienst, 1986, 17: 43
25 Kalay I, Kramer M J, Napolitano R E. High-accuracy X-ray diffraction analysis of phase evolution sequence during devitrification of Cu50Zr50 metallic glass[J]. Metall. Mater. Trans., 2011, 42A: 1144
26 Ma Y P, Dong D D, Dong C, et al. Composition formulas of binary eutectics[J]. Sci. Rep., 2015, 5: 17880
doi: 10.1038/srep17880 pmid: 26658618
27 Fan C, Takeuchi A, Inoue A. Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases[J]. Mater. Trans., JIM, 1999, 40: 42
28 Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
doi: 10.1016/S1359-6454(99)00300-6
29 Inoue A, Zhang T. Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold[J]. Mater. Trans., JIM, 1995, 36: 1184
30 Kawamura Y, Shibata T, Inoue A, et al. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass[J]. Acta Mater., 1998, 46: 253
doi: 10.1016/S1359-6454(97)00235-8
31 Inoue A, Zhang T, Masumoto T. Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region[J]. Mater. Trans., JIM, 1990, 31: 177
32 Inoue A, Zhang T. Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy[J]. Mater. Trans., JIM, 1996, 37: 1726
33 Lu Z P, Liu C T, Thompson J R, et al. Structural amorphous steels[J]. Phys. Rev. Lett., 2004, 92: 245503
doi: 10.1103/PhysRevLett.92.245503
34 Inoue A, Zhang T, Kim Y H. Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Ag alloys with a nanoscale secondary phase[J]. Mater. Trans., JIM, 1997, 38: 749
35 Zhang T, Inoue A. Density, thermal stability and mechanical properties of Zr-Ti-Al-Cu-Ni bulk amorphous alloys with high Al plus Ti concentrations[J]. Mater. Trans., JIM, 1998, 39: 857
36 Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Anal. Chem., 1957, 29: 1702
doi: 10.1021/ac60131a045
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.