材料研究学报, 2023, 37(4): 281-290 DOI: 10.11901/1005.3093.2022.090

研究论文

Zr55Cu30Al10Ni5 块体金属玻璃的成分优化设计及其晶化行为

朱雪冬1, 张爽,1, 邹存磊1, 刘林根2, 朱智浩2, 万鹏3, 董闯1,2

1.大连交通大学材料科学与工程学院 大连 116028

2.大连理工大学 三束材料改性教育部重点实验室 大连 116024

3.佛山市顺德区美的电热电器制造有限公司 佛山 528300

Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior

ZHU Xuedong1, ZHANG Shuang,1, ZOU Cunlei1, LIU Lingen2, ZHU Zhihao2, WAN Peng3, DONG Chuang1,2

1.School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China

2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China

3.Foshan Shunde Midea Electric Heating Appliance Manufacturing Co. Ltd., Foshan 528300, China

通讯作者: 张爽,副教授,zhangshuang@djtu.edu.cn,研究方向为材料设计

责任编辑: 吴岩

收稿日期: 2022-02-07   修回日期: 2022-05-07  

基金资助: 国家自然科学基金(52101127)
国家自然科学基金(51901033)
辽宁省自然科学基金(2020-BS-208)
辽宁省自然科学基金(2020-BS-207)
大连理工大学三束材料改性教育部重点实验室开放课题(KF2006)
顺德区科技计划(201911220001)

Corresponding authors: ZHANG Shuang, Tel: 13478406944, E-mail:zhangshuang@djtu.edu.cn

Received: 2022-02-07   Revised: 2022-05-07  

Fund supported: National Natural Science Foundation of China(52101127)
National Natural Science Foundation of China(51901033)
Natural Science Foundation of Liaoning Province(2020-BS-208)
Natural Science Foundation of Liaoning Province(2020-BS-207)
Open Project of Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology(KF2006)
Shunde District Science and Technology Project(201911220001)

作者简介 About authors

朱雪冬,女,1997年生,硕士生

摘要

参照Zr55Cu30Al10Ni5合金的成分并应用团簇加连接原子模型,设计具有高玻璃形成能力的Zr-Cu-Al-Ni体系成分。在Zr-Cu-Al-Ni四元体系中,先定出两个与金属玻璃形成相关的晶化相CuZr2和CuZr,其中的局域结构可分别用团簇表述为[Cu-Zr8Cu4]和[Cu-Zr8Cu6],然后应用双团簇模型将这两个团簇按照1∶1的配比构建双团簇式,连接原子个数为2或4或6,由此确定总原子个数为30或32或34,进而选择双团簇式原子总数为32设计出最接近Zr55Cu30Al10Ni5合金的四元块体金属玻璃成分Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3。这种合金玻璃的Trg值可达0.6,晶化激活能为334.138 kJ/mol,均略高于参照合金Zr55Cu30Al10Ni5,表明其具有更高的玻璃形成能力。

关键词: 金属材料; 成分优化; 团簇加连接原子模型; 玻璃形成能力; 块体金属玻璃; 晶化行为

Abstract

According to the principle of cluster-plus-glue-atom model, the composition of a novel Zr-Cu-Al-Ni alloy with glass formation ability was designed by taking the alloy Zr55Cu30Al10Ni5 as reference. In the quaternary Zr-Cu-Al-Ni system, two crystallization phases CuZr2 and CuZr related with amorphous formation were firstly identified, the local structures of these two clusters can be expressed as [Cu-Zr8Cu4] and [Cu-Zr8Cu6] respectively; then, by combining these two clusters in equal proportion while coupling with the number of glue atoms 2, 4, or 6, the dual-cluster formulas for total atom number of 30, 32, or 34 respectively may be constructed by means of the dual-cluster model. Furthermore, according to dual- cluster formula of the total number of atoms of 32, a quaternary alloy with composition Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3 was tentatively designed, which is closest to the reference Zr55Cu30Al10Ni5. The glass formation ability of this alloy was tested experimentally. The results show that its Trg reaches 0.6 and its crystallization activation energy is 334.138 kJ/mol, which are all slightly higher than that of the reference alloy, indicating that the designed alloy has a higher glass formation ability.

Keywords: metallic materials; composition optimization; cluster-plus-glue-atom model; glass formation ability; bulk metallic glasses; crystallization behavior

PDF (8920KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朱雪冬, 张爽, 邹存磊, 刘林根, 朱智浩, 万鹏, 董闯. Zr55Cu30Al10Ni5 块体金属玻璃的成分优化设计及其晶化行为[J]. 材料研究学报, 2023, 37(4): 281-290 DOI:10.11901/1005.3093.2022.090

ZHU Xuedong, ZHANG Shuang, ZOU Cunlei, LIU Lingen, ZHU Zhihao, WAN Peng, DONG Chuang. Optimization Design of a Bulk Metallic Glass Zr55Cu30Al10Ni5 and its Crystallization Behavior[J]. Chinese Journal of Materials Research, 2023, 37(4): 281-290 DOI:10.11901/1005.3093.2022.090

非晶合金也称金属玻璃(Metallic glass),是金属合金的熔体从高温冷却到熔点以下没有结晶而直接“冷冻”生成的固体[1]。直径大于1 mm的金属玻璃称为块体金属玻璃(Bulk metallic glasses,BMGs)[2]。Zr-Cu-Al-Ni体系块体金属玻璃具有优异的弹性、强度、韧性、耐磨损和高硬度等力学性能,受到了极大的关注。Zr55Al10Ni5Cu30是最具有代表性的合金之一。20世纪90年代初Inoue等[3]制备的Zr55Cu30Al10Ni5块体金属玻璃,其直径达到30 mm,过冷液相区ΔTx=(Tx-Tg)=84 K,Trg可达0.595[4]。金属合金的Trg值越大则其GFA越大,就越容易形成非晶态。Turnbull[5]根据结晶形核动力学用Trg表征合金玻璃形成能力(Glass forming ability,GFA),Trg=Tg/Tm。Lu等[6]发现,用Tg/Tl (即玻璃转变温度Tg与液相线温度Tl的比值)定义的Trg能更好地表征合金的玻璃形成能力。大量实验结果表明,Tg/TlTg/Tm能更直观反映金属玻璃的GFA。

金属玻璃抵抗晶化的能力等价于其GFA的大小,是表征其晶化过程中激活能的一个重要动力学参数。激活能分为等温晶化激活能和连续升温晶化激活能。热激活能越高其热稳定性越高,抗晶化能力越强,对应的GFA越高。激活能(活化能)是一个原子成为某种激活原子团簇的一部分而必须获得的能量[7]。本文用热分析方法测量连续升温条件下的晶化激活能,从而分析了大块金属玻璃的热稳定性。对于Zr55Cu30Al10Ni5大块金属玻璃,Gao等[8]研究了其在连续加热和等温退火过程中从非晶态到过冷液相区结晶的过程,由TgTxTp计算出其激活能分别为335.79±37.52,315.52±0.86和315.58±0.48 kJ/mol,表明其具有较高的热稳定性和抗晶化能力,也预示其具有较高的GFA。

大块金属玻璃的结构属于亚稳态结构,在适当的条件下向能量更低的亚稳态或者平衡晶态转变,即发生晶化。研究金属玻璃的晶化行为,有助于了解其局域结构。对于Zr-Cu-Al-Ni四元体系的晶化,人们展开了大量的研究工作。文献[9~13]中的Zr55Cu30Al10Ni5合金其晶化相都出现CuZr2相,还可能出现其他相:准晶相、Cu2Zr4相和一个未报道过的四方相等。此外,在二元基础Cu-Zr体系中存在一个非晶合金成分Cu50Zr50[14],其对应的晶化相为CuZr相。在液相急冷制备出的金属玻璃中,大多保留了液体的局域近程序结构[15]

为了从局域结构入手揭示块体金属玻璃的成分根源,本文应用董闯等[16, 17]提出的团簇加连接原子模型。这个模型认为,任何一种近程序结构都可看作由团簇加上位于团簇间隙的连接原子组成,表示成统一的团簇式形式为:[团簇](连接原子) x,其中x为连接原子的个数,通常为1或3。应用团簇加连接原子模型,可设计块体金属玻璃的成分。王增睿等[18]在Ti-Cu二元成分的基础上添加合金化元素Zr和Sn,制备出具有高GFA的Ti-Cu-Zr-Sn四元体系BMG成分Ti40Zr10Cu56.94Sn3.06,其临界尺寸可达5 mm;耿遥祥等[19]应用该模型设计和优化了具有高GFA的Fe-B-Si-Nb块体金属玻璃,制备出临界尺寸为2.5 mm的块体金属玻璃Si8.33B16.66Fe62.5-63.33Nb3.33-4.16。应用团簇加连接原子模型分析块体金属玻璃对应晶化相的局域结构,可得到与金属玻璃形成有关的团簇结构进而得到相应的团簇式以指导金属玻璃的成分设计。

在Zr-Cu-Al-Ni体系中,Zr55Cu30Al10Ni5合金因其较高的GFA可作为进一步优化设计块体金属玻璃成分的基础。本文参照Zr55Cu30Al10Ni5合金成分,基于CuZr2和CuZr两个晶化相,应用团簇加连接原子模型设计一种新的块体金属玻璃成分,测试其GFA、激活能、晶化行为及力学性能并与参照合金Zr55Cu30Al10Ni5对比,全面分析这种合金的综合性能。

1 基于团簇加连接原子模型的成分解析及设计

块体金属玻璃的形成对成分的变化非常敏感,成分的微小变化可能使其GFA发生很大的变化。金属玻璃与对应的晶化相,应共享局域结构[20]。应用团簇加连接原子模型解析块体金属玻璃成分时,应该先确定与金属玻璃相对应的晶化相[21],然后确定晶化相中的主团簇,这是最关键的一步。最后将主团簇加上合适的连接原子,便可构建出描述金属玻璃成分的团簇式。

可从Pearson手册查出CuZr2相的结构信息,如表1所示。CuZr2相的结构类型为MoSi2,空间群为I4/mmm,晶格常数为a=0.32204 nm,c=1.11832 nm。CuZr2相中有两种独立的原子占位,可衍生出两种不同的第一近邻配位多面体团簇,分别为以Cu为心的[Cu-Zr8Cu4]和以Zr为心的[Zr-Cu4Zr9],如图1所示。

表1   CuZr2相的晶体结构信息[22]

Table 1  Structure information of CuZr2 phase[22]

Phase name
CuZr2
Structure type
MoSi2
Pearson symbol
tI6
Space group
I4/mmm
No.139
a=0.32204(4) nmc=1.11832(6) nm
Cu2a4/mmmx=0y=0z =0Occ.=1
Zr4e4mmx=0y=0z =0.34Occ.=1

新窗口打开| 下载CSV


图1

图1   CuZr2相中的两种团簇

Fig.1   Two kinds of clusters in CuZr2 phase (a) [Cu-Zr8Cu4] with Cu atom as the center and (b) [Zr-Cu4Zr9] with Zr atom as the center, with the yellow spheres representing Zr atoms and the red ones representing Cu atoms


CuZr相是BMG Cu50Zr50晶化后生成的高温稳定相[23~25]。CuZr相的结构信息列于表2,其结构类型为ClCs型,空间群为Pm3¯m,晶格常数为a=0.32620(5) nm。在CuZr相中有两种原子占位,对应两种团簇:[Cu-Zr8Cu6]和[Zr-Cu8Zr6],二者构型相同,如图2所示。

表2   CuZr相的晶体结构信息[22]

Table 2  Structure information of CuZr phase[22]

Phase name
CuZr
Structure type
ClCs
Pearson symbol
cP2
Space group
Pm3¯m
No.221
a=0.32620(5) nm
Cu1am3¯mx=0y=0z=0Occ.=1
Zr1bm3¯mx=1/2y=1/2z=1/2Occ.=1

新窗口打开| 下载CSV


图2

图2   CuZr相中的两种团簇

Fig.2   Two kinds of clusters in CuZrphase (a) [Cu-Zr8Cu6] with Cu atom as the center and (b) [Zr-Cu8Zr6] with Zr atom as the center, with the grey spheres representing Zr atoms and the blue ones representing Cu atoms


根据结构遗传性[20],CuZr2相和CuZr相中的所有团簇结构均可作为对应块体金属玻璃的近程序局域结构。在CuZr2相中选择以Cu为心的[Cu-Zr8Cu4],在CuZr相中选择以Cu为中心的[Cu-Zr8Cu6],进而引入双团簇模型[26]并将其按照1∶1混合,连接原子个数可能为2或4或6,双团簇式的总原子个数因此有且仅有三种情况,即30、32、34。作为初步尝试,选择总原子个数为32的双团簇式作为多元块体金属玻璃设计的基础成分,将Zr55Cu30Al10Ni5的成分转换成32原子的成分式,即Zr17.6Cu9.6Al3.2Ni1.6,取整后设计出合金成分Zr17Cu10Al3Ni2,其原子百分比为Zr53.1Cu31.3Al9.4Ni6.3。本文成分式中的原子个数均用下脚标,若数字总和为32则数字表示原子个数,若数字总和为100则数字表示原子百分比。

2 实验验证

实验用原料:纯金属Zr(99.2%)、Cu(99.99%)、Al(99.99%)和Ni(99.9%)。按照上文设计的名义成分配置母合金,用电弧炉熔炼出15 g母合金棒材。为了使各元素混合均匀,每个母合金锭交替翻面重熔4~5次。将合金熔液浇注到铜模具中,铸造出直径为5 mm、长度为46 mm的棒状样品。在熔炼过程中质量损失不超过0.1%。为了减小误差以保证实验对比的科学性,在各合金棒的相同位置截取实验用样品。

用X射线衍射(Cu靶,Kα 辐射,λ=0.15406 nm)和SUPRA 55场发射扫描电镜检测样品是否为完全非晶态。由差示扫描量热仪(Differential scanning calorimetry, DSC, TA Q100)测量非晶合金的玻璃转变温度Tg和晶化温度Tx,用差示热分析仪(Differential thermal analysis, DTA,TA Q600)测量熔点Tm和液相线温度Tl。用连续加热方法测量样品的晶化激活能。

为了了解金属玻璃晶化过程中组织转变,将样品切成直径为5 mm 厚度为1 mm的薄片,在晶化温度附近进行真空热处理。先将热处理炉温升到设置温度。将样品置于石英管中,然后将石英管抽真空至1×10-3 Pa,封管后将其放入设定温度的热处理炉中。因为冷料入炉使炉温降低,重新加热使炉温升到设定的温度,开始计时时间为60 min,这段时间称为保温时间。用X射线衍射、扫描测量处理后样品的密度和硬度。

3 实验结果和讨论

3.1 XRD分析

图3给出了Zr17Cu10Al3Ni2样品的XRD谱。可以看出,Zr17Cu10Al3Ni2样品XRD谱中的衍射峰在一定角度范围内宽化弥散成“驼峰”(或称“馒头峰”),没有持续较尖的结晶衍射峰。这表明,Zr17Cu10Al3Ni2金属玻璃的XRD谱为典型的宽衍射峰。从图3可以看出,在36.5°附近持续一个较强的宽化漫散射峰,表明所制备的样品主要由非晶相组成。在39°附近出现一个突出的尖锐衍射峰,根据Jade标定初步判断其与B2-CuZr相对应。

图3

图3   尺寸为5 mm的Zr17Cu10Al3Ni2块体金属玻璃的X射线衍射谱

Fig.3   X-ray diffraction spectrogram of 5 mm Zr17Cu10-Al3Ni2 BMG


3.2 SEM形貌分析

图4给出了SEM面扫描结果,可见金属玻璃中存在少量直径小于0.5 μm级的黑色夹杂物,Zr和Ni元素分布均匀,其中黑色夹杂物Al元素含量较为富集,初步判定析出的晶化相是富Al相。

图4

图4   Zr17Cu10Al3Ni2 BMG能谱面扫分析

Fig.4   EDS area scan analysis of Zr17Cu10Al3Ni2 BMG


表3可见,金属玻璃样品的成分为Zr51.2Cu33.24-Al8.89Ni6.67,接近于本文设计的成分Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3。以上的实验结果和分析表明,用吸铸法制备的金属玻璃棒由非晶组成,且元素分布较均匀,是以团簇加连接原子模型为判据设计的合金成分大块金属玻璃。

表3   Zr17Cu10Al3Ni2 面扫描能谱成分

Table 3  Composition of glassy matrix in Zr17Cu10Al3Ni2 after EDS area scan

ElementLine typeConcentration / mol·L-1Mass fraction/%Atomic fraction/%
AlK1.583.248.89
NiK3.035.286.67
CuL9.0228.4833.24
ZrL27.8563.0051.20
Total100.00100.00

新窗口打开| 下载CSV


图5可见,在灰白色金属玻璃中存在圆形及方形黑色析出结晶相。对黑色析出相进行了点分布测试,根据表4中的原子百分比可推测析出晶化相为B2-CuZr相,其中Al元素替代Cu元素。为了进一步确定析出晶化相的元素,对金属玻璃样品进行差热分析,以确定其热处理温度并得到退火后的样品。虽然生成相的确切性质还不清楚,但是结果与所设计的合金成分一致。这可能与熔体中明显的短程有序和团簇形成的强烈倾向有关。这些团簇可作为结晶的成核位点。此外,某些成分(如Al)在粒子/基体界面附近的剩余非晶基体中选择性富集,使后续晶粒很难长大[27,28]

图5

图5   Zr17Cu10Al3Ni2 BMG 微观组织

Fig.5   Microstructure of Zr17Cu10Al3Ni2 BMG


表4   析出晶化相对应的成分表

Table 4  Composition of a precipitated crystal after EDS

ElementLine type

Concentration

/ mol·L-1

Mass fraction /%

Atomic fraction

/%

AlK3.466.9118.04
NiK1.863.313.98
CuL8.2025.5528.35
ZrL27.9464.2349.63
Total100.00100.00

新窗口打开| 下载CSV


上述实验结果表明,本文设计的合金成分主要以非晶相存在,但是这不是本文的目的,因为在Zr-Cu-Al-Ni四元合金体系中已经有多个合金成分可形成大块金属玻璃[29,30]。本文的目的是通过实验验证和完善新判据的正确性,并以此为根据寻找该四元合金体系中最佳的金属玻璃成分。

3.3 DSCDTA分析

可根据玻璃转变温度Tg和晶化温度Tx表征金属玻璃的热稳定性,因为Tg温度越高合金在弛豫期间原子越难以移动;Tx温度越高表明合金在过冷液相区内的组元元素越难扩散和结构重排,而使金属玻璃的热稳定性提高。Inoue等[31]提出用过冷液相区宽度ΔTx(=Tx-Tg)作为表征金属玻璃热稳定性的参数。

图6a给出了Zr17Cu10Al3Ni2金属玻璃在升温速率10 K/min时的DSC曲线。可以看出,DSC曲线上有一个明显的晶化放热峰,在晶化前有一个玻璃转变点Tg,随后是较大的过冷液相区ΔTx,接下来是一个明显的放热峰,对应的是其晶化过程。从图6a可以确定,Zr17Cu10Al3Ni2金属玻璃的玻璃转变点Tg约为715 K,晶化温度Tx为773 K,过冷液相区ΔTx达58 K。

图6

图6   Zr17Cu10Al3Ni2块体金属玻璃的DSC、DTA曲线(DSC的升温速率为10 K/min,DTA为恒速度升温)

Fig.6   Curves of DSC (a) and DTA curve (b) of the Zr17Cu10Al3Ni2 bulk metallic glass at the heating rate of 10 K/min and a constant heating rate


文献[32]报道的Zr55Cu30Al10Ni5合金的非晶形成能力强,过冷液相区宽,其玻璃转化温度Tg、晶化温度Tx和过冷液相区ΔTx分别为676、755和79 K。本文在10 K/min条件下得到的实验结果是58 K,产生差异可能与制备方法和原料纯度有关。

图6b给出了Zr17Cu10Al3Ni2金属玻璃在升温速率为10 K/min时的DTA曲线。可以看出,Zr17Cu10Al3Ni2金属玻璃只有一个熔化峰。根据TA软件分析结果,Zr17Cu10Al3Ni2金属玻璃的熔点温度Tm约为1142 K,液相线温度Tl为1173 K,Trg=Tg/Tl为0.60。其Trg值略高于文献[4]中Zr55Cu30Al10Ni5合金的Trg值。玻璃的形成有利于共晶成分或与成分其接近的合金[33]。若Trg的值不小于2/3,说明过冷液体在凝固时更容易形成金属玻璃。

升温速率为10 K/min时Zr17Cu10Al3Ni2金属玻璃的ΔTx为58 K,低于文献报道的Zr55Cu30Al10Ni5合金。这表明,在优化具有最佳玻璃形成能力的合金成分的同时,其在过冷液相区内的抗晶化能力并不是最强的。在本文的实验结果中ΔTxTrg值不一致,这种不一致在很多合金体系中都出现过[34,35],即具有较小ΔTx值的合金成分却具有较大的玻璃形成能力。这表明,金属玻璃的形成能力与其ΔTx之间没有必然的联系。

3.4 晶化和热激活能分析

图7为5、10、20、30和40 K/min 5种升温速率下Zr17Cu10Al3Ni2大块金属玻璃试样的DSC曲线。可以看出,在连续升温过程中Zr17Cu10Al3Ni2大块金属玻璃的晶化过程为单阶段晶化。同时,随着升温速率的不同DSC曲线也有所变化:在升温速率较低时,玻璃转变温度等特征点不是很明显;但是随着升温速率的提高TgTxTp明显向高温方向移动,表现出明显的动力学特征。从图8可以看出,五种速率的曲线其趋势与DSC曲线的趋势相同,升温速率提高则熔点温度Tm、液相线温度Tl随之向高温移动,也表现出明显的动力学特征。

图7

图7   Zr17Cu10Al3Ni2大块金属玻璃在不同升温速率下的DSC曲线

Fig.7   DSC traces of the Zr17Cu10Al3Ni2 bulk metallic glass at different heating rates, where the measured heat flow, in arbitrary unit, points downwards, showing heat-absorption reactions


图8

图8   Zr17Cu10Al3Ni2大块金属玻璃在不同升温速率下的DTA曲线

Fig.8   DTA traces of the Zr17Cu10Al3Ni2 bulk metallic glass at different heating rates, where the measured heat flow, in arbitrary unit, points upwards, showing heat-release reactions


根据Kissinger方程[36],用TgTxTp、ln(r/T2)对1/T作图得到如图9所示的直线,其中r为升温速率,T为不同升温速率下的特征点温度值。根据图9中直线的斜率可确定激活能E值,其中Tg温度下的激活能最高为338.793 kJ/mol,Tp温度下的激活能最低为332.328 kJ/mol,Tx温度下的激活能介于TgTp的激活能之间为334.138 kJ/mol。金属玻璃在晶化过程中的激活能,反映晶化过程中所克服的能量势垒。激活能越高,表明需要克服的势垒越大和金属玻璃越稳定。与文献[8]中Zr55Cu30Al10Ni5块体金属玻璃的激活能对比,本文实验中测得的表观激活能都略高,表明Zr17Cu10Al3Ni2大块金属玻璃有较高的热稳定性和较强的抗晶化能力。

图9

图9   Zr17Cu10Al3Ni2大块金属玻璃试样的Kissinger曲线

Fig.9   Kissinger plots of the Zr17Cu10Al3Ni2 bulk metallic glass


表5列出了不同升温速率下的TgTx、ΔTxTmTlTrg。从表5可见,随着升温速率的提高过冷液相区ΔTx随之变宽,其范围为58~68 K。升温速率为40 K/min时本文实验中Zr17Cu10Al3Ni2大块金属玻璃样品的ΔTx可达68 K。五种升温速率下的Trg值都为0.6。

表5   不同升温速率下Zr17Cu10Al3Ni2BMG样品的热学参数

Table 5  Thermal parameters of Zr17Cu10Al3Ni2 BMG at different heating rates

Heating rates

/K·min-1

Tg

/K

Tx

/K

ΔTx

/K

Tp

/K

Tm

/K

Tl

/K

Trg
571076050769113811650.6
1071577358778114211730.6
2072378461787114311930.6
3072679064793114712080.6
4072779468798114812100.6

Note:Tgglass transformation temperature, Tx—crystallization temperature, ΔTx=Tx-Tg, Tp—peak temperature, Tm—melting temperature, Tl—liquidus temperature, Trg = Tg/Tl

新窗口打开| 下载CSV


3.5 晶化退火后的组织

Zr基金属玻璃的过冷液相区为350~500℃。高温下的流变过程伴随着微量的晶化,尤其是在靠近晶化温度Tx晶化现象更严重。热稳定性差的Zr基金属玻璃成分在接近Tx的温度便失去完全非晶的结构,也不再具有金属玻璃的特性。实验结果表明,本文设计的Zr17Cu10Al3Ni2大块金属玻璃具有较高的玻璃形成能力和热稳定性。根据DSC曲线选择在Tx温度进行热处理,因为石英管隔热需使加热温度高于Tx温度(770 K)。在800 K对合金试样进行热处理,鉴定Zr17Cu10Al3Ni2大块金属玻璃的相组成,以检验团簇加连接原子理论的正确性。

为了确定晶化过程中微观结构的变化,测试了晶化后Zr17Cu10Al3Ni2合金的XRD谱。图10给出了晶化后的Zr17Cu10Al3Ni2大块金属玻璃(在800 K退火60 min,然后随炉冷却)的XRD谱。可以看出,热处理后的样品显示出大部分晶化相。Jade软件分析结果表明,其结晶产物含两个主要相:CuZr2和CuZr, 这个结果与本文在成分设计时参照的晶化相吻合。

图10

图10   在800 K热处理保温1 h后几乎完全晶化的Zr17Cu10Al3Ni2的X射线衍射谱

Fig.10   XRD patterns of Zr17Cu10Al3Ni2 with complete crystallization after heat treatment for 1 hour at 800 K


图11给出了退火态Zr17Cu10Al3Ni2的能谱面扫分析照片。可以看出,晶化后的合金样品中析出了更多尺寸小于0.5 μm的黑色夹杂物,可以确认为析出的晶化相,与铸态扫描结果一致。Zr和Ni元素在析出相中分布均匀,Al元素比较富集,表明是富Al相,Al元素代替Cu元素。还可以看出,析出相有两种,一种是尺寸约为0.5 μm的圆形析出相,另一种的形状不规则。

图11

图11   退火态Zr17Cu10Al3Ni2的能谱面扫分析

Fig.11   EDS area scan analysis of the annealed alloy Zr17Cu10Al3Ni2


为了确定析出晶相是CuZr2和CuZr并验证团簇加连接原子模型的正确性,对热处理后的Zr17Cu10Al3Ni2大块金属玻璃进行了SEM观察。图12给出了退火态Zr17Cu10Al3Ni2 BMG的微观组织。可以看出,在灰白色金属玻璃试样上存在黑色析出晶化相。EDS能谱分析给出的各检测点Zr17Cu10Al3Ni2的元素构成,列于表6表6表明,析出相1点的Cu、Zr原子比为Cu(Al、Ni)∶Zr=1∶1.68,析出相2点的Cu、Zr原子比为Cu(Al、Ni)∶Zr=1∶1.57,析出相3点的Cu、Zr原子的比为Cu(Al、Ni)∶Zr=1.02∶1。合金中析出晶化相中Cu与Zr的原子比有两种。在误差范围内,结晶相的Cu、Zr原子比接近1∶1和1∶2,基本符合B2-CuZr和CuZr2。XRD给出的结果也证实,在灰白色金属玻璃试样上的黑色析出结晶相有两种:Zr17Cu10Al3Ni2块体金属玻璃的晶化退火后析出相结构为序列号139、I4/mmm的CuZr2相和221、Pm3¯m的CuZr相。这些实验结果与本文采用团簇加连接原子模型设计金属玻璃成分时参照的晶化相相符,表明团簇理论是正确的。

图12

图12   退火态Zr17Cu10Al3Ni2 BMG 的微观组织图

Fig.12   Microstructure diagram of the annealed Zr17Cu10Al3Ni2 BMG,in which 1 and 2 representing CuZr2 phases, 3 and 4 representing CuZr phases


表6   试样的定点EDS分析结果

Table 6  EDS analysis of points in Fig.12 (atomic fraction, %)

PointCuZrAlNi
122.8662.737.916.50
223.0661.148.757.05
328.5449.3618.283.83
432.3752.278.486.88

新窗口打开| 下载CSV


4 结论

(1) 与合金Zr55Cu30Al10Ni5相比,本文设计的合金成分Zr17Cu10Al3Ni2≈Zr53.1Cu31.3Al9.4Ni6.3具有更高的非晶形成能力。在升温速率为10 K/min的条件下,参照合金Zr55Cu30Al10Ni5的特征参数为Tg=676 K,Tx=755 K,ΔTx=79 K,Trg=0.595;而设计的合金其特征参数为Tg=715 K,Tx=773 K,ΔTx=58 K,Trg=0.6,都略高于参照合金。Zr55Cu30Al10Ni5合金在TgTxTp温度下激活能分别为335.79±37.52、315.52±0.86和315.58±0.48 kJ/mol;而设计的合金在TgTxTp温度下得到的激活能分别为338.793、334.138和332.328 kJ/mol,均比Zr55Cu30Al10Ni5合金的激活能高。表明本文设计的合金Zr17Cu10Al3Ni2具有更大的GFA。

(2) Zr17Cu10Al3Ni2块体金属玻璃的晶化相为CuZr2相和CuZr相,与应用团簇加连接原子模型设计合金成分的初始假设一致。

参考文献

Wang W H.

A brief history of metallic glasses

[J]. Physics, 2011, 40: 701

[本文引用: 1]

汪卫华.

金属玻璃研究简史

[J]. 物理, 2011, 40: 701

[本文引用: 1]

Chen H S.

Thermodynamic considerations on the formation and stability of metallic glasses

[J]. Acta Metall., 1974, 22: 1505

DOI      URL     [本文引用: 1]

Inoue A, Zhang T.

Fabrication of bulk glassy Zr55Al10Ni5Cu30 alloy of 30 mm in diameter by a suction casting method

[J]. Mater. Trans., JIM, 1996, 37: 185

[本文引用: 1]

Wang H J, Chen S S, Hu Q, et al.

The glass-forming ability and die casting performance of Zr-based bulk metallic glasses

[J]. Mater. Sci. Technol., 2020, 28(5): 38

[本文引用: 2]

王浩杰, 陈双双, 胡 强 .

Zr基块体非晶合金玻璃形成能力与压铸成型性能研究

[J]. 材料科学与工艺, 2020, 28(5): 38

[本文引用: 2]

Turnbull D.

Under what conditions can a glass be formed?

[J]. Contemp. Phys., 1969, 10: 473

DOI      URL     [本文引用: 1]

Lu Z P, Liu C T.

A new glass-forming ability criterion for bulk metallic glasses

[J]. Acta Mater., 2002, 50: 3501

DOI      URL     [本文引用: 1]

Wu Z F.

Thermal analysis kinetics and its application in bulk amorphous alloy

[J]. Mater. Rev., 2011, 25(18): 262

[本文引用: 1]

吴志方.

热分析动力学及其在大块非晶合金研究中的应用

[J]. 材料导报, 2011, 25(18): 262

[本文引用: 1]

Gao Y L, Shen J, Sun J F, et al.

Crystallization behavior of ZrAlNiCu bulk metallic glass with wide supercooled liquid region

[J]. Mater. Lett., 2003, 57: 1894

DOI      URL     [本文引用: 2]

Yavari A R, Uriarte J L, Tousimi K, et al.

In-situ detection of the onset crystallisation of Zr55Cu30Al10Ni5 from the bulk glass and the liquid states using synchrotron radiation

[J]. Mater. Sci. Forum, 1999, 307: 17

DOI      URL     [本文引用: 1]

Zhang Q S, Deng Y F, He L L, et al.

Isothermal nanocrystallization of Zr55Al10Ni5-Cu30 bulk amorphous alloy near the glass transition temperature

[J]. Acta Metall. Sin., 2003, 39: 301

张庆生, 邓玉福, 贺连龙 .

Zr55Al10Ni5Cu30块状非晶合金靠近玻璃转变点的等温纳米晶化

[J]. 金属学报, 2003, 39: 301

De Oliveira M F, Botta F W J, Kaufman M J, et al.

Phases formed during crystallization of Zr55Al10Ni5Cu30 metallic glass containing oxygen

[J]. J. Non-Cryst. Solids, 2002, 304: 51

DOI      URL    

Hu Q, Lin X, Yang G L, et al.

Crystallization behavior of Zr55Al10Ni5Cu30 amorphous alloys with different morphologies and thermal history conditions

[J]. Acta Metall. Sin., 2012, 48: 1467

DOI      URL    

胡 桥, 林 鑫, 杨高林 .

不同形态和热历史条件下Zr55Al10Ni5Cu30非晶合金的晶化行为

[J]. 金属学报, 2012, 48: 1467

Wu Z F.

Effect of differential thermal analysis experimental condition on crystallization behavior of bulk amorphous alloy Zr55Cu30Al10Ni5

[J]. Hot Work. Technol., 2013, 42(10): 106

[本文引用: 1]

吴志方.

差热分析实验条件对大块非晶合金Zr55Cu30Al10Ni5晶化行为的影响

[J]. 热加工工艺, 2013, 42(10): 106

[本文引用: 1]

Arias D, Abriata J P.

Cu-Zr (copper-zirconium)

[J]. J. Phase Equilib., 1990, 11: 452

DOI      URL     [本文引用: 1]

Sakata M, Cowlam N, Davies H A.

Chemical short-range order in liquid and amorphous Cu66Ti34 alloys

[J]. J. Phys., 1981, 11F: L157

[本文引用: 1]

Dong C, Wang Q, Qiang J B, et al.

From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses

[J]. J. Phys., 2007, 40D: R273

[本文引用: 1]

Dong C, Wang Z J, Zhang S, et al.

Review of structural models for the compositional interpretation of metallic glasses

[J]. Int. Mater. Rev., 2020, 65: 286

DOI      URL     [本文引用: 1]

Wang Z R, Qiang J B, Wang Y M, et al.

Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model

[J]. Acta Mater., 2016, 111: 366

DOI      URL     [本文引用: 1]

Geng Y X, Wang Y M, Qiang J B, et al.

Composition design and optimization of Fe-B-Si-Nb bulk amorphous alloys

[J]. Acta Metall. Sin., 2016, 52: 1459

DOI      [本文引用: 1]

Fe-based amorphous alloys are well known for their good magnetic properties including ultrahigh saturation magnetization, low coercive force, high magnetic permeability and low core loss. But these alloys were only prepared into ribbon form in early times due to their insufficient glass-forming abilities (GFAs). The present work focuses on the design of Fe-B-Si-Nb bulk metallic glasses with good soft magnetic properties and high glass-forming ability. Glass formation in Fe-B system is first considered with cluster-plus-glue-atom model. A basic composition formula [B-B2Fe8]Fe is proposed as the framework for multi-component alloy design. Considering the structural stability of the model glass, Si and Nb are introduced to the [B-B2Fe8] cluster to replace the center B and shell Fe atoms, from which a series of Fe-B-Si-Nb alloys with composition formulas [Si-B2Fe8-xNbx]Fe (x=0.1~1.2) are derived. Copper mold casting experiments revealed that bulk glass alloys with a critical diameter (dc) exceeding 1.0 mm are readily obtained with the Nb content range of x=0.2~1.2, the largest dc (about 2.5 mm) appears in the vicinity of x=0.4~0.5. Considering the local packing efficiency of Fe-B-Si-Nb glass model structure, another series alloy compositions, namely, [(Si1-yBy)-B2Fe8-xNbx]Fe is reached by increasing Nb and decreasing Si simultaneously in [Si-B2Fe7.6Nb0.4]Fe basal glass alloys. The experimental results show that bulk glass alloys with dc=2.5 mm are available over a wide range of compositions from (x=0.5, y=0.05) to (x=0.9, y=0.25). Excellent magnetic softness with high saturation magnetizations (Bs=1.14~1.46 T) and low coercive forces (Hc=1.6~6.7 A/m) is found in the [Si-B2Fe8-xNbx]Fe (x=0.2~0.6) series glass alloys. A high fracture strength of 4220 MPa with a plasticity of 0.5% is observed in the [(Si0.95B0.05)-B2Fe7.5Nb0.5]Fe bulk glass alloy.

耿遥祥, 王英敏, 羌建兵 .

Fe-B-Si-Nb块体非晶合金的成分设计与优化

[J]. 金属学报, 2016, 52: 1459

DOI      [本文引用: 1]

利用“团簇加连接原子”模型设计和优化具有高形成能力的Fe-B-Si-Nb块体非晶合金. 以源于Fe-B二元共晶相的Fe<sub>2</sub>B局域结构为基础, 结合电子浓度判据, 构建Fe-B二元理想非晶团簇式[B-B<sub>2</sub>Fe<sub>8</sub>]Fe; 考虑到原子间混合焓的大小, 选择Si和Nb原子分别替代[B-B<sub>2</sub>Fe<sub>8</sub>]团簇的中心原子B和壳层原子Fe, 得到[Si-B<sub>2</sub>Fe<sub>8-</sub><sub>x</sub>Nb<sub>x</sub>]Fe系列四元非晶成分. 结果表明, [Si-B<sub>2</sub>Fe<sub>8-</sub><sub>x</sub>Nb<sub>x</sub>]Fe团簇式在x=0.2~1.2成分处均可形成块体非晶合金, 其中在x=0.4~0.5的成分区间内均可形成临界尺寸为2.5 mm的块体非晶合金. 考虑到原子半径的大小, 鉴于增加Nb的同时降低Si的含量可维持[Si-B<sub>2</sub>Fe<sub>7.6</sub>Nb<sub>0.4</sub>]Fe非晶团簇结构的拓扑密堆性, 由此得到另一系列[(Si<sub>1-</sub><sub>y</sub>B<sub>y</sub>)-B<sub>2</sub>Fe<sub>8-</sub><sub>x</sub>Nb<sub>x</sub>]Fe团簇式成分. 结果表明, 在(x=0.5, y=0.05)~(x=0.9, y=0.25)成分区间内均可通过Cu模铸造法获得直径为2.5 mm的块体非晶. 新设计获得的Fe-B-Si-Nb块体非晶合金具有优良的室温软磁性能和力学性能, 其中[Si-B<sub>2</sub>Fe<sub>8-</sub><sub>x</sub>Nb<sub>x</sub>]Fe (x=0.2~0.6)非晶合金的饱和磁化强度为1.14~1.46 T, 矫顽力为1.6~6.7 A/m; [(Si<sub>0.95</sub>B<sub>0.05</sub>)-B<sub>2</sub>Fe<sub>7.5</sub>Nb<sub>0.5</sub>]Fe块体非晶合金的室温压缩断裂强度达4220 MPa, 塑性形变约为0.5%.

Zhang S, Dong D D, Wang Z J, et al.

Spherical periodicity as structural homology of crystalline and amorphous states

[J]. Sci. China Mater., 2018, 61: 409

DOI      URL     [本文引用: 2]

Wang Z J, Dong D D, Zhang S.

Characteristics of cluster formulas for binary bulk metallic glasses

[J]. J. Alloys Compd., 2016, 654: 340

DOI      URL     [本文引用: 1]

Pierre V.

Pearson's handbook desk edition

[J]. Crystallogr. Data Intermet Phases., 1997, 1: 2

[本文引用: 4]

Köster U, Herold U.

Crystallization of metallic glasses

[A]. GüntherodtHJ, BeckH. Glassy Metals I[M]. Berlin Heidelberg: Springer, 1981: 225

[本文引用: 1]

Kneller E, Khan Y, Gorres U.

ChemInform abstract: the alloy system copper-zirconium. Part 1. phase diagram and structural relations

[J]. Chem. Informationsdienst, 1986, 17: 43

Kalay I, Kramer M J, Napolitano R E.

High-accuracy X-ray diffraction analysis of phase evolution sequence during devitrification of Cu50Zr50 metallic glass

[J]. Metall. Mater. Trans., 2011, 42A: 1144

[本文引用: 1]

Ma Y P, Dong D D, Dong C, et al.

Composition formulas of binary eutectics

[J]. Sci. Rep., 2015, 5: 17880

DOI      PMID      [本文引用: 1]

The present paper addresses the long-standing composition puzzle of eutectic points by introducing a new structural tool for the description of short-range-order structural unit, the cluster-plus-glueatom model. In this model, any structure is dissociated into a 1st-neighbor cluster and a few glue atoms between the clusters, expressed by a cluster formula clusterglue(x). This model is applied here to establish the structural model for eutectic liquids, assuming that a eutectic liquid consist of two subunits issued from the relevant eutectic phases, each being expressed by the cluster formula for ideal metallic glasses, i.e., cluster(glue atom)(1 or 3). A structural unit is then composed of two clusters from the relevant eutectic phases plus 2, 4, or 6 glue atoms. Such a dual cluster formulism is well validated in all boron-containing (except those located by the extreme phase diagram ends) and in some commonly-encountered binary eutectics, within accuracies below 1 at.%. The dual cluster formulas vary extensively and are rarely identical even for eutectics of close compositions. They are generally formed with two distinctly different cluster types, with special cluster matching rules such as cuboctahedron plus capped trigonal prism and rhombidodecahedron plus octahedral antiprism.

Fan C, Takeuchi A, Inoue A.

Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases

[J]. Mater. Trans., JIM, 1999, 40: 42

[本文引用: 1]

Inoue A.

Stabilization of metallic supercooled liquid and bulk amorphous alloys

[J]. Acta Mater., 2000, 48: 279

DOI      URL     [本文引用: 1]

Inoue A, Zhang T.

Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold

[J]. Mater. Trans., JIM, 1995, 36: 1184

[本文引用: 1]

Kawamura Y, Shibata T, Inoue A, et al.

Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass

[J]. Acta Mater., 1998, 46: 253

DOI      URL     [本文引用: 1]

Inoue A, Zhang T, Masumoto T.

Zr-Al-Ni amorphous alloys with high glass transition temperature and significant supercooled liquid region

[J]. Mater. Trans., JIM, 1990, 31: 177

[本文引用: 1]

Inoue A, Zhang T.

Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy

[J]. Mater. Trans., JIM, 1996, 37: 1726

[本文引用: 1]

Lu Z P, Liu C T, Thompson J R, et al.

Structural amorphous steels

[J]. Phys. Rev. Lett., 2004, 92: 245503

DOI      URL     [本文引用: 1]

Inoue A, Zhang T, Kim Y H.

Synthesis of high strength bulk amorphous Zr-Al-Ni-Cu-Ag alloys with a nanoscale secondary phase

[J]. Mater. Trans., JIM, 1997, 38: 749

[本文引用: 1]

Zhang T, Inoue A.

Density, thermal stability and mechanical properties of Zr-Ti-Al-Cu-Ni bulk amorphous alloys with high Al plus Ti concentrations

[J]. Mater. Trans., JIM, 1998, 39: 857

[本文引用: 1]

Kissinger H E.

Reaction kinetics in differential thermal analysis

[J]. Anal. Chem., 1957, 29: 1702

DOI      URL     [本文引用: 1]

/