Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (5): 353-361    DOI: 10.11901/1005.3093.2021.625
  研究论文 本期目录 | 过刊浏览 |
选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响
蒋梦蕾1, 代斌斌1, 陈亮2, 刘慧1, 闵师领1, 杨帆1, 侯娟1,2()
1.上海理工大学材料与化学学院 上海 200093
2.核电安全监控技术与装备国家重点实验室 中广核工程有限公司 深圳 518172
Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel
JIANG Menglei1, DAI Binbin1, CHEN Liang2, LIU Hui1, MIN Shiling1, YANG Fan1, HOU Juan1,2()
1.School of Materials and Chemistry, University of Shanghai Science and Technology, Shanghai 200093, China
2.State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China
引用本文:

蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
Menglei JIANG, Binbin DAI, Liang CHEN, Hui LIU, Shiling MIN, Fan YANG, Juan HOU. Effect of Building Dimensions by Selective Laser Melting on Pitting Properties of 304L Stainless Steel[J]. Chinese Journal of Materials Research, 2023, 37(5): 353-361.

全文: PDF(22586 KB)   HTML
摘要: 

采用选区激光熔化(SLM)技术制备304L不锈钢样品,通过改变样品的宽度和厚度使其具有不同的成形尺寸。模拟复杂结构零部件在成形过程中不同部位的尺寸和厚度的差异,研究了不同成形尺寸304L样品的显微组织和点蚀行为。结果表明:随着成形尺寸的增大点蚀坑的数量和面积随之增加。点蚀加剧的主要原因,是晶粒尺寸的增大和残余应力的累积。根据对微观组织结构和NETFABB残余应力的模拟计算结果,揭示了SLM成形尺寸-微观组织-腐蚀行为之间的关系。

关键词 金属材料选区激光熔化304L不锈钢尺寸效应腐蚀性能NETFABB模拟    
Abstract

The impact of building dimensions on the corrosion performance of the selective laser melting (SLMed) 304L stainless steel with different thickness and width was investigated by changing the scanning track (T) and depositing layers (L). The results show that the coarsening of grain size and the accumulation of the residual stress, as well as the number of pits and the pitting area all increased with the increasing of sample size. Accordingly, the preliminary relationship between dimension design, microstructure morphology, corrosion performance and residual stress were established.

Key wordsmetallic materials    selective laser melting    304L stainless steel    size effect    corrosion performance    NETFABB simulation
收稿日期: 2021-11-12     
ZTFLH:  TG178  
基金资助:深圳市国际合作研究科技计划(GJHZ20200731095203011);核电安全监控技术与装备国家重点实验室开放课题(CSO-102-001);国家自然科学基金(52073176);国家自然科学基金(U22B2067)
作者简介: 蒋梦蕾,女,1996年生,硕士生
SampleCNPSCrCuMnNiOSiMo
Powder0.0060.0130.0270.00118.950.0330.0169.480.0290.0560.87
SLMed0.0150.0130.0270.00319.70.0320.0549.620.0310.0650.83
表1  原始粉末和SLM-304L不锈钢的化学成分
图1  改变扫描道次T和打印层数L控制成形尺寸

1

Settled tracks

(T=20)

2

Settled tracks

(T=300)

3

Settled layers

(L=100)

T20-L100L100-T100T300-L100
T20-L500L100-T200T300-L500
T20-L700L100-T300T300-L700
T20-L1000-T300-L1000
表2  不同尺寸效应样品的说明和编号
图2  SLM制备的304L不锈钢的金相照片
图3  SLM制备的304L不锈钢的晶内胞状亚晶组织
图4  低道次不同层厚SLM 304L样品沿打印构建方向的金相照片
图5  不同尺寸效应SLM 304L样品沿打印构建方向的金相照片
图6  T300-L1000样品沿构建方向不同区域的晶粒分布
图7  L100系列、20和T300系列样品的显微硬度
图8  不同尺寸样品的表面点蚀形貌
图9  不同尺寸样品点蚀坑的平均尺寸和面积比
图10  NetFabb模拟结果
1 Zhang Y, Zhang J, Yan Q, et al. Amorphous alloy strengthened stainless steel manufactured by selective laser melting: Enhanced strength and improved corrosion resistance [J]. Scripta Materialia, 2018, 148: 20
doi: 10.1016/j.scriptamat.2018.01.016
2 Yvon P, Carré F. Structural materials challenges for advanced reactor systems [J]. Journal of Nuclear Materials, 2009, 385(2): 217
doi: 10.1016/j.jnucmat.2008.11.026
3 Lalhe M, Hughes A E, Xu W, et al. Unexpected erosion-corrosion behavior of 316L stainless steel produced by selective laser melting [J]. Corrosion Science, 2019, 155: 67
doi: 10.1016/j.corsci.2019.04.028
4 Liu J, Song Y, Chen C, et al. Effect of scanning speed on the microstructure and mechanical behavior of 316L stainless steel fabricated by selective laser melting [J]. Materials and Design, 2020, 186: 108355
doi: 10.1016/j.matdes.2019.108355
5 Carboni C, Peyer P, Ranger E, et al. Influence of high power diode laser surface melting on the pitting corrosion resistance of type 316L stainless steel [J]. Journal of Materials Science, 2002, 37: 3715
doi: 10.1023/A:1016569527098
6 Ziętala M, Durejko T, Polański M, et al. The microstructure, mechanical properties and corrosion resistance of 316L stainless steel fabricated using laser engineered net shaping [J]. Mater. Sci. Eng. A, 2016, 677: 1
doi: 10.1016/j.msea.2016.09.028
7 Wang Y M, Voisin T, Mckeown J T, et al. Additively manufactured hierarchical stainless steels with high strength and ductility [J]. Nature Materials, 2018, 17(1): 63
doi: 10.1038/nmat5021 pmid: 29115290
8 Hou J, Chen W, Chen Z, et al. Microstructure, tensile properties and mechanical anisotropy of selective laser melted 304L stainless steel [J]. J. Mater. Sci. Technol., 2020, 48: 63
doi: 10.1016/j.jmst.2020.01.011
9 Lodhi M J K, Deen K M, Haider W. Corrosion behavior of additively manufactured 316L stainless steel in acidic media [J]. Materialia, 2018, 2: 111
doi: 10.1016/j.mtla.2018.06.015
10 Hara N, Hirabayashi K, Sugawara Y, et al. Improvement of pitting corrosion resistance of type 316L stainless steel by potentiostatic removal of surface MnS inclusions [J]. International Journal of Corrosion, 2012, (1): 482730
11 Stewart J, Williams D E. The initiation of pitting corrosion on austenitic stainless steel: on the role and importance of sulphide inclusions [J]. Corrosion Science, 1992, 33(3): 457
doi: 10.1016/0010-938X(92)90074-D
12 Castle J E, Ke R. Studies by auger spectroscopy of pit initiation at the site of inclusions in stainless steel [J]. Corrosion Science, 1990, 30(4-5): 409
doi: 10.1016/0010-938X(90)90047-9
13 Sun Y, Moroz A, Alrbaey K. Sliding Wear Characteristics and Corrosion Behaviour of Selective Laser Melted 316L Stainless Steel [J]. Journal of Materials Engineering and Performance, 2014, 23(2):518
doi: 10.1007/s11665-013-0784-8
14 Macatangay D A, Thomas S, Birbilis N, et al. Unexpected interface corrosion and sensitization susceptibility in additively manufactured austenitic stainless steel [J]. Corrosion, 2018, 74(2): 153
doi: 10.5006/2723
15 Laleh M, Hughes A E, Yang S, et al. Two and three-dimensional characterisation of localised corrosion affected by lack-of-fusion pores in 316L stainless steel produced by selective laser melting [J]. Corrosion Science, 2020, 165: 108394
doi: 10.1016/j.corsci.2019.108394
16 Ettefagh A H, Guo S, Raush J. Corrosion performance of additively manufactured stainless steel parts: A review [J]. Additive Manufacturing, 2021, 37: 101689
doi: 10.1016/j.addma.2020.101689
17 Sander G, Thomas S, Cruz V, et al. On the corrosion and metastable pitting characteristics of 316L stainless steel produced by selective laser melting [J]. Journal of The Electrochemical Society, 2017, 164(6): C250
doi: 10.1149/2.0551706jes
18 Duan Z, Man C, Dong C, et al. Pitting behavior of SLM 316L stainless steel exposed to chloride environments with different aggressiveness: Pitting mechanism induced by gas pores [J]. Corrosion Science, 2020, 167: 108520
doi: 10.1016/j.corsci.2020.108520
19 Antonysamy A A, Meyer J, Prangnell P B. Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting [J]. Materials Characterization, 2013, 84: 153
doi: 10.1016/j.matchar.2013.07.012
20 Yang N, Yee J, Zheng B, et al. Process-structure-property relationships for 316L stainless steel fabricated by additive manufacturing and its implication for component engineering [J]. Journal of Thermal Spray Technology, 2017, 26(4): 610
doi: 10.1007/s11666-016-0480-y
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.