Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 21-28    DOI: 10.11901/1005.3093.2022.171
  研究论文 本期目录 | 过刊浏览 |
不同针刺工艺的针刺复合材料面内拉伸强度分析
戚云超1, 方国东2(), 周振功2, 梁军3()
1.航空工业成都飞机工业(集团)有限责任公司 成都 610091
2.哈尔滨工业大学 特种环境复合材料技术国家级重点实验室 哈尔滨 150080
3.北京理工大学宇航学院 北京 100081
In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes
QI Yunchao1, FANG Guodong2(), ZHOU Zhengong2, LIANG Jun3()
1.AVIC Chengdu Aircraft Industrial (Group) CO., LTD, Chengdu 610091, China
2.National Key Laboratory of Special Environmental Composite Technology, Harbin Institute of Technology, Harbin 150080, China
3.School of Astronautics, Beijing Institute of Technology, Beijing 100081, China
引用本文:

戚云超, 方国东, 周振功, 梁军. 不同针刺工艺的针刺复合材料面内拉伸强度分析[J]. 材料研究学报, 2023, 37(1): 21-28.
Yunchao QI, Guodong FANG, Zhengong ZHOU, Jun LIANG. In-plane Tensile Strength for Needle-punched Composites Prepared by Different Needling Processes[J]. Chinese Journal of Materials Research, 2023, 37(1): 21-28.

全文: PDF(8596 KB)   HTML
摘要: 

6种针刺工艺不同的碳纤维增强树脂基复合材料,其面内拉伸强度随着针刺密度和针刺深度的增大而降低,针刺处纤维的断裂使材料内的缺陷失稳扩展和面内纤维断裂,进而使材料整体拉伸失效。根据面内拉伸实验结果和纤维累计损伤理论并引入纤维体积折减系数,建立了分析针刺复合材料面内拉伸强度的理论模型。这个模型的预测结果与实验结果相符,并发现断裂纤维簇的个数与体积折减系数相关。用该模型可预报不同针刺工艺复合材料的面内拉伸强度,并指导设计针刺复合材料的预制体。

关键词 复合材料碳纤维针刺针刺工艺拉伸强度体积折减系数理论模型    
Abstract

The in-plane tensile strength of six carbon fiber reinforced resin-based composites with different needle punching processes decreases with the increase of needle punching density and needle punching depth. The fiber fracture at the needle punching regions can make the defects instability propagation in the material, which can induce the tensile failure of material. Based on the in-plane tensile test results and fiber cumulative damage theory, a theoretical model for analyzing in-plane tensile strength of needle punched composites are established by introducing fiber volume reduction coefficient. The prediction results of this model are consistent with the experimental results. It is found that the number of broken fiber clusters is related to the volume reduction coefficient. The model can be used to predict the in-plane tensile strength of composites with different needling processes, and to guide the design of the needle punching preforms.

Key wordscomposite    carbon fiber needled    needling processes    tensile strength    volume reduction coefficient    theoretical model
收稿日期: 2022-03-25     
ZTFLH:  TB332  
基金资助:国家自然科学基金(11732002);国家自然科学基金(12090034);黑龙江省自然科学基金(YQ2021A004)
作者简介: 戚云超,男,1993年生,博士生
图1  针刺预制体结构示意图[14]
Process idNeedling depth/mmNeedling density /needles·cm-2Interlayer density (layers)/cmTensile strength /MPaCV
1132213.5179.26.43%
2133513.5165.09.68%
3152213.5131.98.74%
4153513.5123.010.4%
5182214.272.27.30%
6183515.262.910.3%
表1  针刺复合材料制备工艺和拉伸强度
图2  拉伸试件的尺寸和形状
图3  针刺复合材料的拉伸试验和拉伸试件的断口
图4  工艺不同的针刺复合材料的应力-应变曲线
图5  针刺工艺不同的拉伸试件破坏时的SEM形貌以及工艺1试件和工艺5试件的断口
图6  两种不同的针刺区域
图7  偏转纤维厚度方向的等效长度
图8  针刺复合材料的模型
Process idVolume reduction coefficientαCV
10.2316.60%
20.2537.52%
30.2946.82%
40.3128.04%
50.3816.95%
60.417.00%
表2  针刺工艺不同材料的体积折减系数
图9  不同i值的模型预测强度
图10  不同工艺模型的计算值与实验值以及计算值与实验值的相对误差
图11  无损伤和含损伤的无纬布纤维的断裂
图12  断裂纤维的根数与体积折减系数的关系
1 Yan Y E, Huang Q Z. Application and development of C/C composite material for aviation brake [J]. New Carbon Material, 1996(3): 13
1 颜月娥, 黄启忠. 航空刹车用C/C复合材料的应用与发展 [J]. 新型炭材料, 1996(3): 13
2 Lacombe A, Pichon T, Lacoste M. High temperature composite nozzle extensions, a mature and efficient technology to improve upper stage Liquid Rocket Engine performance [J]. AIAA 2007-5470
3 Liang J, Fang G D. Analysis Method for Mechanical Properties of Three Dimensional Braided Composites [M]. Harbin: Harbin Institute of Technology Press, 2014
3 梁 军, 方国东. 三维编织复合材料力学性能分析方法 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2014
4 Zhang X H, Li H J, Hao Z B, et al. Influence of needle-punching process parameters on mechanical properties of C/C reinforced carbon fiber net [J]. Journal of Inorganic Materials, 2007, 22(5): 963
4 张晓虎, 李贺军, 郝志彪 等. 针刺工艺参数对炭布网胎增强C/C材料力学性能的影响 [J]. 无机材料学报, 2007, 22(5): 963
doi: 10.3724/SP.J.1077.2007.00963
5 Ji A L, Cui H, Li H J, et al. Performance analysis of a carbon cloth/felt layer needled perform [J]. New Carbon Material, 2011, 26(2): 109
doi: 10.1016/S1872-5805(11)60070-X
5 嵇阿琳, 崔 红, 李贺军 等. 炭布叠层针刺预制体性能分析 [J]. 新型炭材料, 2011, 26(2): 109
6 Li D S, Luo G, Yao Q Q, et al. High temperature compression properties and failure mechanism of 3D needle-punched carbon/carbon composites [J]. Materials Science & Engineering A, 2015, 621: 105
7 Nie J, Xu Y, Zhang L, et al. Microstructure, thermophysical, and ablative performances of a 3D needled C/C-SiC composite [J]. International Journal of Applied Ceramic Technology, 2010, 7(2): 197
doi: 10.1111/j.1744-7402.2008.02341.x
8 Fan Kai. Structure and properties of three-dimensional needle-punched carbon felt reinforced resin-based carbon composites [D]. Wuxi: Jiangnan University, 2019
8 樊 凯. 三维针刺碳毡增强树脂炭复合材料的结构及性能研究 [D]. 无锡: 江南大学, 2019
9 Xu H J, Zhang L T, Cheng L F. The yarn size dependence of tensile and in-plane shear properties of three-dimensional needled textile reinforced ceramic matrix composites [J]. Materials and Design, 2015, 67: 428
doi: 10.1016/j.matdes.2014.11.061
10 Xie J B, Fang G D, Chen Z, et al. Effect of needling parameters on the effective properties of 3D needled C/C-SiC composites [J]. Composites Science and Technology, 2015, 117: 69
doi: 10.1016/j.compscitech.2015.06.003
11 Xie J B, Fang G D, Chen Z, et al. Numerical and experimental studies on scattered mechanical properties for 3D needled C/C-SiC composites [J]. Composite Structures, 2018, 192: 545
doi: 10.1016/j.compstruct.2018.03.056
12 Jia Y Z. Research on meso-structure characterization and mechanical behavior simulation of needled carbon/carbon composites [D]. Wuhan: Huazhong University of Science & Technology, 2017
12 贾永臻. 针刺C/C复合材料细观结构表征及力学行为仿真研究 [D]. 武汉: 华中科技大学, 2017
13 Qi Y C, Fang G D, Wang Z W, et al. An improved analytical method for calculating stiffness of 3D needled composites with different needle-punched processes [J]. Composite Structures, 2020, 237(4): 111938
doi: 10.1016/j.compstruct.2020.111938
14 Chen Zhen. Biaxial failure mechanism and high tenperature tensile properties of needled C/C-SiC composite [D]. Harbin: Harbin Institute of Technology, 2018
14 陈 振. 针刺C/C-SiC复合材料双轴失效机制及高温拉伸性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
15 Zou J J. Study on mechanical properties of carbon/carbon composite structure based on needled technology [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019
15 邹佳俊. 基于针刺工艺的碳/碳复合材料结构力学性能研究 [D]. 南京: 南京航空航天大学, 2019
16 Cheng H X, Liu Y Y, Qiao Z W, et al. Effects of 3D needling process parameters on mechanical properties of carbon fiber composite [J]. Fiberglass, 2020, (4): 13
16 程海霞, 刘延友, 乔志炜 等. 三维针刺工艺参数对碳纤维复合材料力学性能的影响 [J]. 玻璃纤维, 2020, (4): 13
17 Gundel D B, Wawner F E. Experimental and theoretical assessment of the longitudinal tensile strength of unidirectional Sic-fiber/titanium-matrix composites [J]. Composites Science and Technology, 1997, 57: 471
doi: 10.1016/S0266-3538(96)00163-7
18 Ibnabdeljalil M, Curtin W A. Strength and reliability of notched fiber-reinforced composites [J]. Acta Materialia, 1997, 45(9): 3641
doi: 10.1016/S1359-6454(97)00056-6
19 Deng C B, Qian Z M, Duan W J. Experimental determination of interfacial shear strength and fiber strength distribution parameters of fiber resin [J]. Experimental mechanics, 1997, 12(2): 204
19 邓传斌, 钱振明, 段文江. 纤维树脂界面剪切强度及纤维强度分布参数的实验测定 [J]. 实验力学, 1997, 12(2): 204
20 Zhang X, Wang Y M, Yang Q, et al. Study on tensile behavior of SiC_f/TC17 composites [J]. Acta Metallurgica Sinica, 2015, 51(9): 1025
20 张 旭, 王玉敏, 杨 青 等. SiC_f/TC17复合材料拉伸行为研究 [J]. 金属学报, 2015, 51(9): 1025
21 Li J K, Yang Y Q, Yuan M N, et al. Effect of properties of SiC fibers on longitudinal tensile behavior of SiCf/Ti-6A1-4V composites [J]. Trans. Nonferrous Met. Soc. China, 2008, 18: 523
doi: 10.1016/S1003-6326(08)60092-8
22 Hui C Y, Shia D, Berglund L A. Estimation of interfacial shear strength: an application of a new statistical theory for single fiber composite test [J]. Composites Science and Technology, 1999, 59: 2037
doi: 10.1016/S0266-3538(99)00064-0
23 Wang Z K, Xian G J, Li H. Study on tensile properties of domestic carbon fiber [J]. Industrial Buildings, 2013, 43(6): 1
23 王自柯, 咸贵军, 李 惠. 国产碳纤维拉伸性能研究 [J]. 工业建筑, 2013, 43(6): 1
24 Zhang J C, Zhou Z L. Study on the reasons of crack and its influence on the molded phenolic composite parts [J]. Journal of Materials Science & Engineering, 2007, 25(3): 453
24 张建川, 周祝林. 酚醛模压复合材料制品裂纹产生原因及对其质量的影响 [J]. 材料科学与工程学报, 2007, 25(3): 453
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.