Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (12): 881-892    DOI: 10.11901/1005.3093.2021.151
  研究论文 本期目录 | 过刊浏览 |
Ti-6Al-4V合金的室温蠕变行为
席国强1,2, 邱建科1,2,3(), 雷家峰1,2,3(), 马英杰1,2,3, 杨锐1,2,3
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
3.南方海洋科学与工程广东省实验室(珠海) 珠海 519000
Room Temperature Creep Behavior of Ti-6Al-4V Alloy
XI Guoqiang1,2, QIU Jianke1,2,3(), LEI Jiafeng1,2,3(), MA Yingjie1,2,3, YANG Rui1,2,3
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
引用本文:

席国强, 邱建科, 雷家峰, 马英杰, 杨锐. Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35(12): 881-892.
Guoqiang XI, Jianke QIU, Jiafeng LEI, Yingjie MA, Rui YANG. Room Temperature Creep Behavior of Ti-6Al-4V Alloy[J]. Chinese Journal of Materials Research, 2021, 35(12): 881-892.

全文: PDF(6239 KB)   HTML
摘要: 

研究了Ti-6Al-4V钛合金板材的室温蠕变行为及其对合金后续使用性能的影响。结果表明:合金的宏观织构、应力水平以及预塑性应变都显著影响其室温蠕变行为。在加载方向上合金的<0001>峰值极密度越高,则其加工硬化指数越大、蠕变指数越小、室温蠕变性能越好。足够大的应力,是合金发生室温蠕变的必要条件。只有在蠕变应力不小于0.85σy的条件下才能观察到较为明显的室温蠕变,且室温蠕变效应随着蠕变应力水平的增大而增大。在室温下无论是蠕变还是单调加载引起的塑性应变,都抑制合金的后续蠕变行为。预加的塑性应变虽然抑制合金的后续蠕变应变,却使合金的后续疲劳性能恶化。

关键词 金属材料钛合金Ti-6Al-4V室温蠕变宏观织构预塑性应变力学性能    
Abstract

The room temperature creep behavior of Ti-6Al-4V alloy and its effect on subsequent mechanical properties were investigated. The results show that all these factors, such as macro-texture, creep stress level and pre-plastic-strain, have a significant impact on the room temperature creep behavior of Ti-6Al-4V. With the increase of the <0001> peak pole density along the loading direction, the work hardening exponent increases, and the creep exponent becomes smaller, resulting in the better room temperature creep property of Ti-6Al-4V. Enough high stress is the prerequisite for room temperature creep. The obvious room temperature creep behavior can be observed only when the creep stress is not lower than 0.85σy, and the room temperature strain increases with the creep stress level. Pre-plastic-strain can suppress the subsequent room temperature creep of Ti-6Al-4V, no matter the pre-plastic-strain comes from the monotonic loading or from the creep behavior. The pre-plastic-strain can deteriorate the fatigue property of the alloy, although it can reduce subsequent creep strain.

Key wordsmetallic materials    titanium alloy    Ti-6Al-4V    room temperature creep    macrotexture    pre-plastic-strain    mechanical properties
收稿日期: 2021-02-26     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(51701219);国家重点研发计划(2016YFC0300600);南方海洋科学与工程广东省实验室(珠海)创新团队建设项目(311021013)
作者简介: 席国强,男,1992年生,博士生
图1  试样的规格和取样示意图
σy / MPaE / GPan<0001> peak pole density
ND 0.5H857111.20.023-
TD 0H1016129.50.0473.15
TD 0.25H979129.20.0382.08
TD 0.5H955128.80.0515
RD 0H905120.60.039-
RD 0.25H908123.10.0431.28
RD 0.5H917124.60.0462.08
表1  Ti-6Al-4V轧制板材各向各层单调压缩性能(平行样数量为2)
图2  普通蠕变和保载疲劳的加载波形
图3  Ti-6Al-4V轧制板材从表层到心部的显微组织
图4  Ti-6Al-4V轧制板材从表层到心部的(0001)极图
图5  Ti-6Al-4V轧制板材各向各层的室温单调压缩应力应变曲线
图6  Ti-6Al-4V轧制板材各向各层的室温压缩蠕变应变-时间曲线以及蠕变速率-时间曲线
Creep coefficient ACreep exponent b<0001> peak pole density
ND 0.5H0.820.17-
TD 0H0.870.133.15
TD 0.25H0.710.132.08
TD 0.5H0.490.125
RD 0H0.390.17-
RD 0.25H0.520.161.28
RD 0.5H0.390.162.08
表2  Ti-6Al-4V各向各层室温压缩蠕变参数的拟合结果(平行样数量为2)
图7  加工硬化指数n和蠕变指数b与<0001>峰值极密度之间的关系
图8  Ti-6Al-4V轧制板材在普通压缩蠕变和压缩保载疲劳中塑性应变的累积
Creep coefficient ACreep exponent b
ND 0.5H1.200.17
TD 0H1.460.09
RD 0H1.210.12
表3  Ti-6Al-4V轧制板材室温压缩保载疲劳中蠕变参数的拟合结果(平行样数量为2)
图9  阶梯升力蠕变实验的设计以及Ti-6Al-4V轧制板材阶梯升力蠕变实验中各应力水平下蠕变应变随时间的变化
图10  预塑性应变对Ti-6Al-4V轧制板材室温蠕变性能的影响
图11  典型的“蠕变+疲劳”和“单调拉伸+疲劳”的应力应变曲线
σmaxyεp0/%Nf
HCF0.800462055
HCF0.800444641
C+HCF0.800.8052881
T+HCF0.800.9848913
HCF0.95033952
HCF0.95031077
T+HCF0.951.0022570
C+HCF0.951.3716987
表4  预塑性应变对Ti-6Al-4V轧制板材疲劳性能的影响
1 Peng J, Zhou C Y, Dai Q, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature [J]. Mater. Sci. Eng., 2014, 611A: 123
2 Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature [J]. Mater. Sci. Eng., 2004, 387-389A: 719
3 Kameyama T, Matsunaga T, Sato E, et al. Suppression of ambient-temperature creep in CP-Ti by cold-rolling [J]. Mater. Sci. Eng., 2009, 510-511A: 364
4 Harrison W J, Whittaker M T, Lancaster R J. A model for time dependent strain accumulation and damage at low temperatures in Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 574A: 130
5 Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metall. Trans., 1974, 5: 1207
6 Thompson A W, Odegard B C. The influence of microstructure on low temperature creep of Ti-5Al-2.5 Sn [J]. Metall. Trans., 1973, 4: 899
7 Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys [J]. Acta Mater., 2000, 48: 1225
8 Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metall. Trans., 1979, 10A: 419
9 Miller W H, Chen R T, Starke E A. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans., 1987, 18A: 1451
10 Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Mater., 2003, 51: 1607
11 Ramesh A, Ankem S. The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8 V alloy [J]. Metall. Mater. Trans., 2002, 33A: 1137
12 Tanaka H, Yamada T, Sato E, et al. Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti [J]. Scripta Mater., 2006, 54: 121
13 Kassner M E, Smith K. Low temperature creep plasticity [J]. J. Mater. Res. Technol., 2014, 3: 280
14 Xi G Q, Lei J F, Qiu J K, et al. A semi-quantitative explanation of the cold dwell effect in titanium alloys [J]. Mater. Des., 2020, 194: 108909
15 Zhang Z. Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue [J]. Acta Mater., 2018, 156: 254
16 Bache M R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
17 Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x=2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
18 Sun C Q, Li Y Q, Xu K L, et al. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77: 223
19 Evans W J, Gostelow C R. The effect of hold time on the fatigue properties of a β-processed titanium alloy [J]. Metall. Trans., 1979, 10A: 1837
20 Gerland M, Lefranc P, Doquet V, et al. Deformation and damage mechanisms in an α/β 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen [J]. Mater. Sci. Eng., 2009, 507A: 132
21 Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
22 Andenstedt H. Creep of titanium at room temperature [J]. Metal Prog., 1949, 56: 658
23 Ankem S, Wyatt Z W, Joost W. Advances in low-temperature (<0.25Tm) creep behavior of single and two-phase titanium alloys [J]. Proced. Eng., 2013, 55: 10
24 Aiyangar A K, Neuberger B W, Oberson P G, et al. The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy [J]. Metall. Mater. Trans., 2005, 36A: 637
25 Jaworski A, Ankem P S. Influence of the second phase on the room-temperature tensile and creep deformation mechanisms of α-β titanium alloys, Part II: Creep deformation [J]. Metall. Mater. Trans., 2006, 37A: 2755
26 Wyatt Z W, Ankem S. Advances in low temperature (<0.25Tm) creep deformation mechanisms of alpha, alpha plus beta, and beta titanium alloys [A].Proceedings of the Ti-2011: Proceedings of the 12th World Conference on Titanium, Vol II [C]. 2012: 862
27 Zhang W D, Liu Y, Wu H, et al. Room temperature creep behavior of Ti-Nb-Ta-Zr-O alloy [J]. Mater. Charact., 2016, 118: 29
28 Hultgren C A, Ankem S, Greene C A. Time-dependent twinning during ambient temperature compression creep of alpha Ti-0. 4Mn alloy [J]. Metall. Mater. Trans., 1999, 30A: 1675
29 Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
30 Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
30 李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
31 Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys [J]. Acta Mater., 2003, 51: 4533
32 Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
33 Zheng Z B, Balint D S, Dunne F P E. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys [J]. J. Mech. Phys. Solids, 2017, 107: 185
34 Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
35 Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
36 Dai Q, Zhou C Y, Peng J, et al. Room-temperature creep behavior on crack tip of commercially pure titanium [J]. Mater. Des., 2015, 85: 618
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.