|
|
Ti-6Al-4V合金的室温蠕变行为 |
席国强1,2, 邱建科1,2,3( ), 雷家峰1,2,3( ), 马英杰1,2,3, 杨锐1,2,3 |
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 3.南方海洋科学与工程广东省实验室(珠海) 珠海 519000 |
|
Room Temperature Creep Behavior of Ti-6Al-4V Alloy |
XI Guoqiang1,2, QIU Jianke1,2,3( ), LEI Jiafeng1,2,3( ), MA Yingjie1,2,3, YANG Rui1,2,3 |
1.Shi -Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3.Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China |
引用本文:
席国强, 邱建科, 雷家峰, 马英杰, 杨锐. Ti-6Al-4V合金的室温蠕变行为[J]. 材料研究学报, 2021, 35(12): 881-892.
Guoqiang XI,
Jianke QIU,
Jiafeng LEI,
Yingjie MA,
Rui YANG.
Room Temperature Creep Behavior of Ti-6Al-4V Alloy[J]. Chinese Journal of Materials Research, 2021, 35(12): 881-892.
1 |
Peng J, Zhou C Y, Dai Q, et al. The temperature and stress dependent primary creep of CP-Ti at low and intermediate temperature [J]. Mater. Sci. Eng., 2014, 611A: 123
|
2 |
Yamada T, Kawabata K, Sato E, et al. Presences of primary creep in various phase metals and alloys at ambient temperature [J]. Mater. Sci. Eng., 2004, 387-389A: 719
|
3 |
Kameyama T, Matsunaga T, Sato E, et al. Suppression of ambient-temperature creep in CP-Ti by cold-rolling [J]. Mater. Sci. Eng., 2009, 510-511A: 364
|
4 |
Harrison W J, Whittaker M T, Lancaster R J. A model for time dependent strain accumulation and damage at low temperatures in Ti-6Al-4V [J]. Mater. Sci. Eng., 2013, 574A: 130
|
5 |
Odegard B C, Thompson A W. Low temperature creep of Ti-6Al-4V [J]. Metall. Trans., 1974, 5: 1207
|
6 |
Thompson A W, Odegard B C. The influence of microstructure on low temperature creep of Ti-5Al-2.5 Sn [J]. Metall. Trans., 1973, 4: 899
|
7 |
Neeraj T, Hou D H, Daehn G S, et al. Phenomenological and microstructural analysis of room temperature creep in titanium alloys [J]. Acta Mater., 2000, 48: 1225
|
8 |
Imam M A, Gilmore C M. Room temperature creep of Ti-6AI-4V [J]. Metall. Trans., 1979, 10A: 419
|
9 |
Miller W H, Chen R T, Starke E A. Microstructure, creep, and tensile deformation in Ti-6Al-2Nb-1Ta-0.8Mo [J]. Metall. Trans., 1987, 18A: 1451
|
10 |
Doraiswamy D, Ankem S. The effect of grain size and stability on ambient temperature tensile and creep deformation in metastable beta titanium alloys [J]. Acta Mater., 2003, 51: 1607
|
11 |
Ramesh A, Ankem S. The effect of grain size on the ambient temperature creep deformation behavior of a beta Ti-14.8 V alloy [J]. Metall. Mater. Trans., 2002, 33A: 1137
|
12 |
Tanaka H, Yamada T, Sato E, et al. Distinguishing the ambient-temperature creep region in a deformation mechanism map of annealed CP-Ti [J]. Scripta Mater., 2006, 54: 121
|
13 |
Kassner M E, Smith K. Low temperature creep plasticity [J]. J. Mater. Res. Technol., 2014, 3: 280
|
14 |
Xi G Q, Lei J F, Qiu J K, et al. A semi-quantitative explanation of the cold dwell effect in titanium alloys [J]. Mater. Des., 2020, 194: 108909
|
15 |
Zhang Z. Micromechanistic study of textured multiphase polycrystals for resisting cold dwell fatigue [J]. Acta Mater., 2018, 156: 254
|
16 |
Bache M R. A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions [J]. Int. J. Fatigue, 2003, 25: 1079
|
17 |
Qiu J K, Ma Y J, Lei J F, et al. A comparative study on dwell fatigue of Ti-6Al-2Sn-4Zr-xMo (x=2 to 6) alloys on a microstructure-normalized basis [J]. Metall. Mater. Trans., 2014, 45A: 6075
|
18 |
Sun C Q, Li Y Q, Xu K L, et al. Effects of intermittent loading time and stress ratio on dwell fatigue behavior of titanium alloy Ti-6Al-4V ELI used in deep-sea submersibles [J]. J. Mater. Sci. Technol., 2021, 77: 223
|
19 |
Evans W J, Gostelow C R. The effect of hold time on the fatigue properties of a β-processed titanium alloy [J]. Metall. Trans., 1979, 10A: 1837
|
20 |
Gerland M, Lefranc P, Doquet V, et al. Deformation and damage mechanisms in an α/β 6242 Ti alloy in fatigue, dwell-fatigue and creep at room temperature. Influence of internal hydrogen [J]. Mater. Sci. Eng., 2009, 507A: 132
|
21 |
Kassner M E, Kosaka Y, Hall J S. Low-cycle dwell-time fatigue in Ti-6242 [J]. Metall. Mater. Trans., 1999, 30A: 2383
|
22 |
Andenstedt H. Creep of titanium at room temperature [J]. Metal Prog., 1949, 56: 658
|
23 |
Ankem S, Wyatt Z W, Joost W. Advances in low-temperature (<0.25Tm) creep behavior of single and two-phase titanium alloys [J]. Proced. Eng., 2013, 55: 10
|
24 |
Aiyangar A K, Neuberger B W, Oberson P G, et al. The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy [J]. Metall. Mater. Trans., 2005, 36A: 637
|
25 |
Jaworski A, Ankem P S. Influence of the second phase on the room-temperature tensile and creep deformation mechanisms of α-β titanium alloys, Part II: Creep deformation [J]. Metall. Mater. Trans., 2006, 37A: 2755
|
26 |
Wyatt Z W, Ankem S. Advances in low temperature (<0.25Tm) creep deformation mechanisms of alpha, alpha plus beta, and beta titanium alloys [A].Proceedings of the Ti-2011: Proceedings of the 12th World Conference on Titanium, Vol II [C]. 2012: 862
|
27 |
Zhang W D, Liu Y, Wu H, et al. Room temperature creep behavior of Ti-Nb-Ta-Zr-O alloy [J]. Mater. Charact., 2016, 118: 29
|
28 |
Hultgren C A, Ankem S, Greene C A. Time-dependent twinning during ambient temperature compression creep of alpha Ti-0. 4Mn alloy [J]. Metall. Mater. Trans., 1999, 30A: 1675
|
29 |
Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Mater. Chem. Phys., 2003, 81: 11
|
30 |
Li W Y, Liu J R, Chen Z Y, et al. Effect of microstructure and texture on room temperature strength of Ti60 Ti-alloy plate [J]. Chin. J. Mater. Res., 2018, 32: 455
|
30 |
李文渊, 刘建荣, 陈志勇等. Ti60合金板材的室温强度与其显微组织和织构的关系 [J]. 材料研究学报, 2018, 32: 455
|
31 |
Hasija V, Ghosh S, Mills M J, et al. Deformation and creep modeling in polycrystalline Ti-6Al alloys [J]. Acta Mater., 2003, 51: 4533
|
32 |
Cuddihy M A, Stapleton A, Williams S, et al. On cold dwell facet fatigue in titanium alloy aero-engine components [J]. Int. J. Fatigue, 2017, 97: 177
|
33 |
Zheng Z B, Balint D S, Dunne F P E. Mechanistic basis of temperature-dependent dwell fatigue in titanium alloys [J]. J. Mech. Phys. Solids, 2017, 107: 185
|
34 |
Ma Y J, Xue Q, Wang H, et al. Deformation twinning in fatigue crack tip plastic zone of Ti-6Al-4V alloy with widmanstatten microstructure [J]. Mater. Charact., 2017, 132: 338
|
35 |
Ma Y J, Youssef S S, Feng X, et al. Fatigue crack tip plastic zone of α + β titanium alloy with widmanstatten microstructure [J]. J. Mater. Sci. Technol., 2018, 34: 2107
|
36 |
Dai Q, Zhou C Y, Peng J, et al. Room-temperature creep behavior on crack tip of commercially pure titanium [J]. Mater. Des., 2015, 85: 618
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|