Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 278-286    DOI: 10.11901/1005.3093.2021.141
  研究论文 本期目录 | 过刊浏览 |
CaO增强复合胶凝材料的性能
郭磊1,2,3,4, 王泽坤1, 郭利霞1,2,3(), 陈平平1, 汪伦焰1,2,3, 李明儒1, 王卫凯1
1.华北水利水电大学 郑州 450046
2.河南水谷研究院 郑州 450046
3.河南省水环境模拟与治理重点实验室 郑州 450002
4.河南水投舆源水生态有限公司 平舆 463400
Performance of CaO Reinforced Composite Cementitious Materials
GUO Lei1,2,3,4, WANG Zekun1, GUO Lixia1,2,3(), CHEN Pingping1, WANG Lunyan1,2,3, LI Mingru1, WANG Weikai1
1.School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
2.Henan Water Valley Research Institute, Zhengzhou 450046, China
3.Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou 450002, China
4.Henan Water Conservancy Investment YuYuan Water Ecology Co. Ltd., Pingyu 463400, China
引用本文:

郭磊, 王泽坤, 郭利霞, 陈平平, 汪伦焰, 李明儒, 王卫凯. CaO增强复合胶凝材料的性能[J]. 材料研究学报, 2022, 36(4): 278-286.
Lei GUO, Zekun WANG, Lixia GUO, Pingping CHEN, Lunyan WANG, Mingru LI, Weikai WANG. Performance of CaO Reinforced Composite Cementitious Materials[J]. Chinese Journal of Materials Research, 2022, 36(4): 278-286.

全文: PDF(5918 KB)   HTML
摘要: 

使用重金属污泥制备免烧砖。使用CaO钙源优化配置复合胶凝材料的组分,并调控胶凝浆体中的水化产物和未水化相。先基于免烧砖原料的配合比计算复合胶凝体系的钙硅比(Ca/Si)并控制其值为0.8~1.2,设计添加CaO的免烧砖实验方案。使用核磁共振(NMR)、透射电镜-能谱等手段和PCAS分析软件,研究了CaO使高硅复合胶凝材料性能提高的机理。结果表明:随着高硅胶凝体系Ca/Si比在0.8~1.2范围内的提高,免烧砖的力学性能先提高后降低,Ca/Si比的最佳值为1.0,CaO也有一个最佳调控值。随着Ca/Si比的提高7 d试样的吸水率先降低后提高,28 d试样的吸水率线性降低。随着Ca/Si比的提高,试样中平面孔径大于200 μm的孔隙率递减,分形维数先减小后增大;对于孔径小于200 μm的孔结构,随着Ca/Si比的提高孔径为200~200 μm的孔减少,孔径小于200 nm的孔增多,孔的体积呈减小的趋势。复合胶凝体系能抑制污泥免烧砖70%以上的重金属浸出量。

关键词 复合材料免烧砖钙硅比污泥力学性能    
Abstract

Unburned brick was prepared with sludge containing heavy metals as raw material, and CaO as calcium source to optimize the composition of the composite cementitious material and to regulate the hydration products and unhydrated phases in the cementitious slurry. First, the Ca/Si ratio (Ca/Si) of the composite cementitious system was calculated based on the mix ratio of raw materials of unfired bricks. Then, an experimental scheme of unfired bricks with varying amount of CaO was designed, and the Ca/Si ratio was quantitatively controlled within the range of 0.8~1.2. The mechanism of CaO improving the properties of high silicon composite cementitious materials was investigated by means of transmission electron microscopy (TEM) and energy spectrum (EDS) and PCAS software. The results show: with the increasing Ca/Si ratio within the range of 0.8~1.2, the mechanical properties of the unfired brick enhance first and then decrease. The optimal value of Ca/Si is 1.0, and there is also an optimal control value of CaO;With the increasing Ca/Si ratio, the water absorption decreases firstly and then increases for the bricks on the 7th day after they were made, and the water absorption decreases linearly for those on the 28th day;With the increasing Ca/Si ratio, the porosity of the plane pore size greater than 200 μm decreases for the prepared bricks, and the fractal dimension decreases first and then increases; For the pore size smaller than 200 μm, with the increase of Ca/Si, the pore size between 200 nm~200 μm decreases, and the pore size smaller than 200nm increases, while the pore size decreases; and Last but not least, the leaching amount of heavy metals from the unburned bricks can be inhibited up to more than 70% by the formed composite cementitious material.

Key wordscomposite    baking-free bricks    Ca/Si    sludge    mechanical property
收稿日期: 2021-02-09     
ZTFLH:  TU526  
基金资助:河南省自然科学基金(202300410270);华北水利水电大学研究生教育创新计划基金(YK2020-04);河南省水利科技攻关项目(GG202040)
作者简介: 郭磊,男,1980年生,教授

Specific surface area

/m2·kg-1

Density

/kg·m-3

Setting time /minCompressive strength/MPaFlexural strength/MPa
InitialFinal3 d28 d3 d28 d
348.7303517624425.949.65.98.6
表1  水泥物理和力学性能
CompositionCaOFe2O3SO3Al2O3MgOSiO2K2ONa2OLOI(Loss-on-Ignition)
Cement51.273.652.469.254.9824.130.791.953.55
Slag0.571.94-241.2247.67.43-2.43
Fly ash(FA)4.644.92-27.701.0656.822.501.192.17
表2  原材料化学成分(质量分数,%)
Particle shapeBulk density/kg·m-³Fineness modulusWater absorption/%Cohesiveness
10 min20 min1 h24 h
Polygon6883.6322.0835.2137.7638.27No
表3  污泥的力学性能
图1  骨料的级配曲线
SampleCement/%Slag/%Fly ash/%CaO/kg·m-3Ca/Si
CaOSiO2CaOSiO2CaOSiO2
DZ51.2724.130.5747.64.6456.8200.76
CS0.850.8
CS1.0281
CS1.2521.2
表4  粗料的组成
图2  免烧砖的成型方式
ProjectStandardsCalculation formulaRemarks
Compressive strengthGB/T 21144-2007Rp=PLBP-max failure load; L-compression surface length;B-compression surface width
Water absorptionGB/T 4111-2013W=m1-mm×100%m1-saturated specimens quality; m-oven dry quality
表5  计算免烧砖抗压强度和吸水率的公式
图3  PCAS分析
图4  胶凝材料的微观形貌
图5  Ca/Si比和龄期对抗压强度的影响
图6  28 d龄期不同Ca/Si比免烧砖的微观形貌
图7  Ca/Si比和龄期对吸水率的影响
图8  Ca/Si比对平面孔隙率和分形维数的影响
图9  Ca/Si比对微观孔结构的影响
图10  Ca/Si对各尺度孔结构分布的影响
ProjectSludgeDZCS0.8CS1.0CS1.2
Cr+6/mg·L-10.2630.0720.0690.0900.064
表6  重金属测试结果
1 Cristelo N, Coelho J, Oliveira M, et al. Recycling and application of mine tailings in alkali-activated cements and mortars—strength development and environmental assessment [J]. Appl. Sci., 2020, 10: 2084
doi: 10.3390/app10062084
2 Viet D B, Chan W P, Phua Z H, et al. The use of fly ashes from waste-to-energy processes as mineral CO2 sequesters and supplementary cementitious materials [J]. J. Hazard. Mater., 2020, 398: 122906
doi: 10.1016/j.jhazmat.2020.122906
3 Wu J, Zheng X Y, Yang A W, et al. Experimental study on the compressive strength of muddy clay solidified by the one-part slag-fly ash based geopolymer [J]. Rock Soil Mech., 2021, 42: 647
3 吴 俊, 征西遥, 杨爱武 等. 矿渣-粉煤灰基地质聚合物固化淤泥质黏土的抗压强度试验研究 [J]. 岩土力学, 2021, 42: 647
4 Duan S Y. Reaction mechanisms and application study of steel slag -fly ash-desulfurized gypsum composite cementitious system [D]. Taiyuan: Shanxi University, 2020
4 段思宇. 钢渣-粉煤灰-脱硫石膏复合胶凝体系的反应机制及应用研究 [D]. 太原: 山西大学, 2020
5 El-Gamal S M A, Selim F A. Utilization of some industrial wastes for eco-friendly cement production [J]. Sustain. Mater. Technol., 2017, 12: 9
6 Yaghoubi M, Arulrajah A, Disfani M M, et al. Effects of industrial by-product based geopolymers on the strength development of a soft soil [J]. Soils Found., 2018, 58: 716
doi: 10.1016/j.sandf.2018.03.005
7 Lieberman R N, Knop Y, Palmerola N M, et al. Production of environmentally friendly sand-like products from granitoid waste sludge and coal fly ash for civil engineering [J]. J. Clean. Prod., 2019, 238: 117880
doi: 10.1016/j.jclepro.2019.117880
8 Song W L, Zhu Z D, Pu S Y, et al. Mechanical performance and micro-mechanism of alkali-activated binary/ternary composite industrial waste residues cementitious materials [J]. Mater. Rep., 2020, 34: 22070
8 宋维龙, 朱志铎, 浦少云 等. 碱激发二元/三元复合工业废渣胶凝材料的力学性能与微观机制 [J]. 材料导报, 2020, 34: 22070
9 Liu F H. Hydration characteristics of alkali activated phosphorus slag composite cementitious materials [J]. J. Build. Mater., 2020, 23: 1038
9 刘方华. 碱激发磷矿渣复合胶凝材料的水化特性 [J]. 建筑材料学报, 2020, 23: 1038
10 Ma H Q, Yi C, Chen H Y, et al. Property and cementation mechanism of alkali-activated coal gangue-slag cementitious materials [J]. Chin. J. Mater. Res., 2018, 32: 898
10 马宏强, 易 成, 陈宏宇 等. 碱激发煤矸石-矿渣胶凝材料的性能和胶结机理 [J]. 材料研究学报, 2018, 32: 898
11 Shi H S, Xia M, Guo X L. Research development on mechanism of fly ash-based geopolymer and effect of each component [J]. J. Chin. Ceram. Soc., 2013, 41: 972
11 施惠生, 夏 明, 郭晓潞. 粉煤灰基地聚合物反应机理及各组分作用的研究进展 [J]. 硅酸盐学报, 2013, 41: 972
12 Zou X T, Wu Q S, Guang J M, et al. Influence of calcium-silicon ratio on performance of hydrothermally synthesized nickel slag aerated concrete [J]. Mater. Rev., 2016, 30(10): 126
12 邹小童, 吴其胜, 光鉴淼 等. 钙硅比对水热合成镍矿渣加气混凝土性能的影响 [J]. 材料导报, 2016, 30(10): 126
13 Gu G H, Xu F, Zhou Y, et al. Formation mechanism of early strength in geopolymer based on molar ratio of mineral components [J]. Acta Mater. Compos. Sin., 2020, 37: 2036
13 顾功辉, 徐 方, 周 宇 等. 基于矿物组分摩尔比的地质聚合物早期强度形成机制 [J]. 复合材料学报, 2020, 37: 2036
14 Zhang N, Liu X M, Sun H H. Hydration characteristics of intermediate-calcium based cementitious materials from red mud and coal gangue [J]. Chin. J. Mater. Res., 2014, 28: 325
14 张 娜, 刘晓明, 孙恒虎. 赤泥-煤矸石基中钙体系胶凝材料的水化特性 [J]. 材料研究学报, 2014, 28: 325
15 Xu Y T, Yang B, Liu X M, et al. Investigation of the medium calcium based non-burnt brick made by red mud and fly ash: durability and hydration characteristics [J]. Int. J. Miner. Metall. Mater., 2019, 26: 983
16 Qin L F, Qu B, Shi C J, et al. Effect of Ca/Si ratio on the formation and characteristics of synthetic aluminosilicate hydrate gels [J]. Mater. Rep., 2020, 34: 12057
16 覃丽芳, 曲 波, 史才军 等. 钙硅比对铝硅酸盐凝胶形成与特性的影响 [J]. 材料导报, 2020, 34: 12057
17 Ministry of Construction of the People's Republic of China. Standard for technical requirements and test method of sand and crushed stone (or gravel) for ordinary concrete [S]. Beijing: China Architecture & Building Press, 2007
17 中华人民共和国建设部. 普通混凝土用砂、石质量及检验方法标准 [S]. 北京: 中国建筑工业出版社, 2007
18 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Solid concrete brick [S]. Beijing: Standards Press of China, 2008
18 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 混凝土实心砖 [S]. 北京: 中国标准出版社, 2008
19 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test methods for the concrete block and brick [S]. Beijing: Standards Press of China, 2014
19 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 混凝土砌块和砖试验方法 [S]. 北京: 中国标准出版社, 2014
20 Korb J P. NMR and nuclear spin relaxation of cement and concrete materials [J]. Curr. Opin. Colloid Interface Sci., 2009, 14: 192
doi: 10.1016/j.cocis.2008.10.004
21 Liu C, Shi B, Zhou J, et al. Quantification and characterization of microporosity by image processing, geometric measurement and statistical methods: Application on SEM images of clay materials [J]. Appl. Clay Sci., 2011, 54: 97
doi: 10.1016/j.clay.2011.07.022
22 Yan G Y, Wei C T, Song Y, et al. Quantitative characterization of shale pore structure based on Ar-SEM and PCAS [J]. Earth Sci., 2018, 43: 1602
22 闫高原, 韦重韬, 宋 昱 等. 基于Ar-SEM及PCAS页岩孔隙结构定量表征 [J]. 地球科学, 2018, 43: 1602
23 State Environmental Protection Administration, The State Bureau of Quality and Technical Supervision. Solid waste-Determination of chromium(Ⅵ)-1,5-Diphenylcarbohydrazide spectrophotometric method [S]. 1995
23 国家环境保护局, 国家技术监督局. 固体废物 六价铬的测定 二苯碳酰二肼分光光度法 [S]. 1995
24 Lodeiro I G, Cristelo N, Palomo A, et al. Use of industrial by-products as alkaline cement activators [J]. Constr. Build. Mater., 2020, 253: 119000
doi: 10.1016/j.conbuildmat.2020.119000
25 Cui X W, Ni W, Ren C. Hydration mechanism of all solid waste cementitious materials based on steel slag and blast furnace slag [J]. Chin. J. Mater. Res., 2017, 31: 687
25 崔孝炜, 倪 文, 任 超. 钢渣矿渣基全固废胶凝材料的水化反应机理 [J]. 材料研究学报, 2017, 31: 687
doi: 10.11901/1005.3093.2016.741
26 Puertas F, Fernández-Jiménez A. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes [J]. Cem. Concr. Compos., 2003, 25: 287
doi: 10.1016/S0958-9465(02)00059-8
27 Zhao S X, Yan H, Wang H T, et al. Effect of fly ash content on hydration kinetics of magnesium potassium phosphate cement [J]. Chin. J. Mater. Res., 2017, 31: 839
27 赵思勰, 晏 华, 汪宏涛 等. 粉煤灰掺量对磷酸钾镁水泥水化动力学的影响 [J]. 材料研究学报, 2017, 31: 839
28 Kapeluszna E, Kotwica Ł, Różycka A, et al. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis [J]. Constr. Build. Mater., 2017, 155: 643
doi: 10.1016/j.conbuildmat.2017.08.091
29 Li N, Farzadnia N, Shi C J. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation [J]. Cem. Concr. Res., 2017, 100: 214
doi: 10.1016/j.cemconres.2017.07.008
30 Si R Z, Guo S C, Dai Q L. Influence of calcium content on the atomic structure and phase formation of alkali-activated cement binder [J]. J. Am. Ceram. Soc., 2019, 102: 1479
doi: 10.1111/jace.15968
31 Guo X L, Meng F J. Microstructure of hydrothermally synthesized fly ash-based tobermorite doped with aluminum [J]. Chin. J. Mater. Res., 2018, 32: 513
31 郭晓潞, 孟凡杰. 水热合成粉煤灰基铝掺杂托贝莫来石的微观结构 [J]. 材料研究学报, 2018, 32: 513
doi: 10.11901/1005.3093.2017.197
32 Mou S B, Sun Z Y, Su X P. A study on the microstructure and expanding mechanism of highly free-calcium oxide cements [J]. J. Wuhan Univ. Technol., 2001, 23(11): 27
32 牟善彬, 孙振亚, 苏小萍. 高游离氧化钙水泥的显微结构与膨胀机理研究 [J]. 武汉理工大学学报, 2001, 23(11): 27
33 Shaikh F U A, Hosan A. Effect of Nano alumina on compressive strength and microstructure of high volume slag and slag-fly ash blended pastes [J]. Front. Mater., 2019, 6: 90
doi: 10.3389/fmats.2019.00090
34 Lü Q, Qiu Q L, Zheng J, et al. Fractal dimension of concrete incorporating silica fume and its correlations to pore structure, strength and permeability [J]. Constr. Build. Mater., 2019, 228: 116986
doi: 10.1016/j.conbuildmat.2019.116986
35 Xia M, Muhamma F, Li S, et al. Solidification of electroplating sludge with alkali-activated fly ash to prepare a non-burnt brick and its risk assessment [J]. RSC Adv., 2020, 10: 4640
doi: 10.1039/C9RA08475D
36 Xu P, Zhao Q L, Qiu W, et al. The evaluation of the heavy metal leaching behavior of MSWI-FA added alkali-activated materials bricks by using different leaching test methods [J]. Int. J. Environ. Res. Public Health, 2019, 16: 1151
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[3] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.