Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (4): 287-297    DOI: 10.11901/1005.3093.2021.702
  研究论文 本期目录 | 过刊浏览 |
分级固溶处理对8Cr4Mo4V钢的微观组织和硬度的影响
于兴福1(), 王士杰2, 郑冬月2, 王全振3, 苏勇4, 赵文增1, 邢飞1
1.沈阳工业大学机械工程学院 沈阳 110870
2.沈阳工业大学材料科学与工程学院 沈阳 110870
3.沈阳鼓风机集团股份有限公司 沈阳 110869
4.沈阳化工大学机械与动力工程学院 沈阳 110142
Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel
YU Xingfu1(), WANG Shijie2, ZHENG Dongyue2, WANG Quanzhen3, SU Yong4, ZHAO Wenzeng1, XING Fei1
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3.Shenyang Blower Group Co. Ltd., Shenyang 110869, China
4.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

于兴福, 王士杰, 郑冬月, 王全振, 苏勇, 赵文增, 邢飞. 分级固溶处理对8Cr4Mo4V钢的微观组织和硬度的影响[J]. 材料研究学报, 2022, 36(4): 287-297.
Xingfu YU, Shijie WANG, Dongyue ZHENG, Quanzhen WANG, Yong SU, Wenzeng ZHAO, Fei XING. Effect of Graded Solution Treatments on Microstructure and Hardness of 8Cr4Mo4V Steel[J]. Chinese Journal of Materials Research, 2022, 36(4): 287-297.

全文: PDF(24636 KB)   HTML
摘要: 

对8Cr4Mo4V航空轴承钢进行分级固溶处理,即在1000~1060℃的初级固溶处理和在1080~1100℃的二级固溶处理,并观察和测试其组织和硬度,研究了分级固溶温度的影响。结果表明,随着初级固溶温度的提高(二级固溶处理为1080℃×10 min),钢中未溶碳化物的体积分数从4.37%逐渐降低到3.43%,但是晶粒没有明显长大。随着二级固溶温度的提高(初级固溶处理为1060℃×30 min),未溶碳化物的体积分数从3.51%逐渐降低到2.84%,平均晶粒尺寸显著增大。当初级固溶温度较低或二级固溶温度较高时,8Cr4Mo4V钢的回火硬度较高。为了使8Cr4Mo4V钢具有高硬度同时避免晶粒粗化,初级固溶温度宜为1020~1050℃,二级固溶温度宜为1080~1090℃。对这种钢进行1020℃×20 min+1090℃×10 min固溶处理后,其平均晶粒尺寸为12.1 μm,回火硬度为63.8 HRC,冲击吸收功为15.28 J,室温抗拉强度为2664.3 MPa。

关键词 金属材料8Cr4Mo4V高温轴承钢分级固溶处理力学性能    
Abstract

The effect of graded solution treatments, i.e. a primary solution treatment at 1000~1060℃ and a secondary solution treatment at 1080~1100℃, on the microstructure and hardness of the 8Cr4Mo4V aviation bearing steel was assessed by means of SEM, TEM and hardness tester. The results show that with the increase of the primary solution temperature from 1000℃ to 1060℃ (the secondary solution treatment was set at 1080℃×10 min), the volume fraction of undissolved carbides in the steel decreased from 4.37% to 3.43%, but the grain growth was not obvious. However, with the increase of secondary solution temperature from 1080℃ to 1100°C (the primary solution treatment was set at 1060°C×30 min), the volume fraction of undissolved carbides gradually decreased from 3.51% to 2.84%, and the average grain size increased significantly. The tempered hardness of the steel can reach a high value when the primary solution temperature is low or the secondary solution temperature is high. In order to improve the hardness and prevent grain coarsening of the steel, the primary solution temperature within the range of 1020~1050℃ is suitable, and the secondary solution temperature is suitable within 1080~1090℃. After being solution treated according to the specifications of 1020℃×20 min+1090℃×10 min, the average grain size of the steel is 12.1 μm, the tempered hardness is 63.8 HRC, the impact absorption energy is 15.28 J, and the tensile strength of the steel is 2664.3 MPa.

Key wordsmetallic materials    8Cr4Mo4V    high temperature bearing steel    graded solution treatment    mechanical property
收稿日期: 2021-12-24     
ZTFLH:  TG142.1  
基金资助:兴辽英才计划(XLYC1902022);辽宁省教育厅2021年度科学研究经费(LJKZ0113)
作者简介: 于兴福,男,1976年生,博士
CCrMoVMnSiFe
0.834.054.231.050.360.22Bal.
表1  实验用8Cr4Mo4V钢的化学成分
图1  8Cr4Mo4V钢的热处理工艺
图2  不同初级固溶处理的8Cr4Mo4V钢的等温淬火组织
图3  未溶碳化物能谱分析以及晶粒尺寸和碳化物的统计
图4  未溶碳化物的体积分数和平均晶粒尺寸随初级固溶温度的变化
图5  不同初级固溶处理8Cr4Mo4V钢的回火组织
图6  不同初级固溶处理8Cr4Mo4V钢的回火组织
图7  不同初级固溶处理后8Cr4Mo4V钢的洛氏硬度
图8  不同二级固溶处理后8Cr4Mo4V钢的等温淬火组织和回火组织
图9  未溶碳化物的体积分数和平均晶粒尺寸随二级固溶温度的变化
图10  8Cr4Mo4V钢的硬度与二级固溶温度之间的关系
图11  在不同固溶温度晶粒生长的示意图
图12  不同分级固溶处理后钢的碳化物溶解和析出示意图
图13  不同分级固溶处理后8Cr4Mo4V钢的平均晶粒尺寸和回火硬度
图14  验证工艺处理试样的金相晶粒和微观组织
1 Sun L X, Li M Q. High temperature behavior of isothermally compressed M50 steel [J]. J. Iron Steel Res. Int., 2015, 22 (010): 969
2 Bhadeshia H K D H. Steels for bearings [J]. Prog. Mater. Sci., 2012, 57(2): 268
doi: 10.1016/j.pmatsci.2011.06.002
3 Gerardi D T, Trivedi H K, Rosado L. Evaluation of fatigue and wear characteristics of M50 steel using MIL-L-7808K [J]. Int. J. Fatigue, 1996, 18(3): 191
doi: 10.1016/0142-1123(96)00097-7
4 Mesquita R A. Tool Steels: Properties and Performance [M]. Florida: CRC Press, Inc., 2017
5 Mukhopadhyay P, Kannaki P S, Srinivas M, et al. Microstructural developments during abrasion of M50 bearing steel [J]. Wear, 2014, 315(1-2): 31
doi: 10.1016/j.wear.2014.03.010
6 Zhou L N, Yang X F, Liu M, et al. Research progress on heat treatment and surface modification technology of 8Cr4Mo4V high-temperature bearing steel [J]. Bearing, 2021(8): 1
6 周丽娜, 杨晓峰, 刘 明 等. 8Cr4Mo4V高温轴承钢热处理及表面改性技术的研究进展 [J]. 轴承, 2021(8): 1
7 Zhao K L, Liu Y B, Yu X F. Effect of solid solution- and mesothermal phase transition-treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chin. J. Mater. Res., 2018, 32(3): 200
7 赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
8 Liu H X, Yu X F, Wei Y H, et al. Development of aviation bearing steel and heat treatment technology [J]. Aeron. Manuf. Technol. 2020, 63(Z1): 94
8 刘洪秀, 于兴福, 魏英华 等. 航空轴承钢的发展及热处理技术 [J]. 航空制造技术, 2020, 63(Z1): 94
9 Boccalini M, Goldenstein H. Solidification of high speed steels [J]. Metall. Rev., 2001, 46(2): 92
doi: 10.1179/095066001101528411
10 Bridge J E, Maniar G N, Philip T V. Carbides in M-50 high speed steel [J]. Metall. Mater. Trans. B, 1971, 2(8): 2209
doi: 10.1007/BF02917552
11 Liu W F, Cao Y F, Guo Y F, et al. Characteristics and transformation of primary carbides during austenitization in Cr4Mo4V bearing steel [J]. Mater. Charact., 2020, 169: 1
12 Zhou L N, Tang G Z, Ma X X, et al. Microstructure evolution of M50 steel during carbon partitioning process [J]. Trans. Mater. Heat Treat., 2018, 39(1): 77
12 周丽娜, 唐光泽, 马欣新 等. M50钢碳分配过程中的组织演化 [J]. 材料热处理学报, 2018, 39(1): 77
13 Cai X, Sun M Y, Wang W, et al. Mathematical models of austnite grain growth of 8Cr4Mo4V aviation bearing steel at high temperature [J]. J. Mater. Eng., 2018, 46(9): 131
13 蔡 欣, 孙明月, 王 卫 等. 8Cr4Mo4Ni4V航空轴承钢高温奥氏体晶粒长大的数学模型 [J]. 材料工程, 2018, 46(9): 131
14 GB/T 6394-2017, Determination of estimating the average grain size of metal [S]. Beijing: Standards Press of China, 2017: 1
14 GB/T 6394-2017, 金属平均晶粒度测定方法[S]. 北京: 中国标准出版社, 2017: 1
15 GB/T 230.1-2018, Metallic materials—Rockwell hardness test—Part 1: Test method[S]. Beijing: Standards Press of China, 2018: 1
15 GB/T 230.1-2018, 金属材料 洛氏硬度试验 第1部分: 试验方法[S]. 北京: 中国标准出版社, 2018: 1
16 GB/T 229-2007, Metallic materials—Charpy pendulum impact test method[S]. Beijing: Standards Press of China, 2007: 1
16 GB/T 229-2007, 金属材料 夏比摆锤冲击试验方法[S]. 北京: 中国标准出版社, 2007: 1
17 GB/T 228-2002, Metallic materials—Tensile testing at ambient temperature[S]. Beijing: Standards Press of China, 2002: 1
17 GB/T 228-2002, 金属材料 室温拉伸试验方法[S]. 北京: 中国标准出版社, 2002: 1
18 Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Mater., 2015, 85: 243
doi: 10.1016/j.actamat.2014.11.029
19 Kawata H, Hayashi K, Sugiura N, et al. Effect of martensite in initial structure on bainite transformation [J]. Mater. Sci. Forum, 2010, 638-642: 3307
doi: 10.4028/www.scientific.net/MSF.638-642.3307
20 Ren J, Li C, Han Y, et al. Effect of initial martensite and tempered carbide on mechanical properties of 3Cr2MnNiMo mold steel [J]. Mater. Sci. Eng. A, 2021, 812: 141080
21 Decaudin B, Djega-Mariadassou C, Cizeron G. Structural study of M50 steel carbides [J]. J. Alloys Compd., 1995, 226(1-2): 208
doi: 10.1016/0925-8388(95)01616-3
22 Yang P, Luo H W. Design and development of improved M50 high-temperature bearing steel [J]. Heat Treat. Met. 2018, 43(8): 7
22 杨 平, 罗海文. 改进型M50高温用轴承钢的设计与研发 [J]. 金属热处理, 2018, 43(8): 7
23 Zou Z X, Xiang J Z, Xu S Y. Theoretical derivation of Hall-Petch relationship and discussion of its applicable range [J]. Phys. Exam. Test. 2012, 30(6): 5
23 邹章雄, 项金钟, 许思勇. Hall-Petch关系的理论推导及其适用范围讨论 [J]. 物理测试, 2012, 30(6): 5
24 Payson P. The Metallurgy of Tool Steels [M]. New York: John Wiley and Sons, Ltd., 1962
25 Hetzner D W, Geertruyden W V. Crystallography and metallography of carbides in high alloy steels [J]. Mater. Charact., 2008, 59(7): 825
doi: 10.1016/j.matchar.2007.07.005
26 Wang F, Qian D S, Mao H J, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with Bainite/Martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9(3): 1
doi: 10.1016/j.jmrt.2019.08.055
27 Xie Z J, Ma X P, Shang C J, Wang X M, Subramanian S V. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel [J]. Mater. Sci. Eng. A, 2015, 641: 37
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.