Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 500-510    DOI: 10.11901/1005.3093.2020.448
  研究论文 本期目录 | 过刊浏览 |
三向正交纤维增强铝基复合材料经向拉伸渐进损伤及其断裂力学行为
刘丰华1, 赵文豪1, 蔡长春1, 王振军1(), 沈高峰1, 张映锋1,2, 徐志锋1, 余欢1
1.南昌航空大学航空制造工程学院 南昌 330063
2.西北工业大学机电工程学院 西安 710072
Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading
LIU Fenghua1, ZHAO Wenhao1, CAI Changchun1, WANG Zhenjun1(), SHEN Gaofeng1, ZHANG Yingfeng1,2, XU Zhifeng1, YU Huan1
1.School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China
2.School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
引用本文:

刘丰华, 赵文豪, 蔡长春, 王振军, 沈高峰, 张映锋, 徐志锋, 余欢. 三向正交纤维增强铝基复合材料经向拉伸渐进损伤及其断裂力学行为[J]. 材料研究学报, 2022, 36(7): 500-510.
Fenghua LIU, Wenhao ZHAO, Changchun CAI, Zhenjun WANG, Gaofeng SHEN, Yingfeng ZHANG, Zhifeng XU, Huan YU. Damage Evolution and Fracture Behavior of Three-directional Orthogonal Fiber Reinforced Aluminum Matrix Composites under Longitudinal Tensile Loading[J]. Chinese Journal of Materials Research, 2022, 36(7): 500-510.

全文: PDF(14095 KB)   HTML
摘要: 

用真空压力浸渗法制备了新型三向正交碳纤维增强铝基(CF/Al)复合材料,根据其内部纱线截面形状和机织结构特征建立了考虑界面作用的细观力学有限元模型,并将数值模拟与实验相结合研究了复合材料在经向拉伸载荷作用下的渐进损伤与断裂力学行为。结果表明,铝基复合材料拉伸弹性模量、极限强度与断裂应变的实验结果,分别为120.7 GPa、771.75 MPa和0.83%。数值模拟的计算误差分别为-3.21%、1.75%和-9.63%,宏观应力-应变曲线的计算结果与实验曲线吻合得较好。在经向拉伸载荷作用下复合材料的基体合金与Z向纱之间的界面先发生失效,随着拉伸应变量的增大纱线交织处基体合金的损伤逐渐累积并先后发生Z纱和纬纱的局部开裂失效,在拉伸变形后期基体合金的失效和经纱断裂最终使复合材料失去承载能力。铝基复合材料的拉伸断口呈现出经纱轴向断裂以及纬纱和Z向纱横向开裂的形貌,起主要承载作用的经纱其轴向断口较为平齐且纤维拔出长度较短,复合材料经向拉伸时表现出一定的脆性断裂特征。

关键词 复合材料力学性能细观力学渐进损伤    
Abstract

A novel 3D orthogonal weaving carbon fibre reinforced Al-matrix composite was prepared by vacuum-pressure infiltration method. A finite element based micromechanical model by considering the interfacial action was developed according to the characteristics of cross-section morphology and weaving structure of yarns in the composite, and then the progressive damage and fracture behavior of the composites subjected to longitudinal tensile loading were assessed via experiment and numerical simulation. The results shown that the acquired tensile modulus, ultimate strength and fracture strain is 120.7 GPa, 771.75 MPa and 0.83%, respectively. The computationally predicted stress-strain curve agrees well with the experimental ones, and the calculation error of the above properties is -3.21%, 1.75% and -9.63%, respectively. At the initial tensile stage local interface failure was observed between the matrix alloy and Z directional yarns. With the increase of tensile strain, the matrix damage zone in the interspace of yarns accumulate gradually and lead to the transverse cracking of Z directional yarns and weft yarns successively. At the final tensile stage, the warp yarns and matrix alloy failed concurrently, and hence the composite lost its bearing capacity. Warp yarns fracture and transverse cracking of weft and Z directional yarns were observed on the tensile fracture morphology. The axial fracture of warp yarns, which play predominant role in load bearing, is flat and with limited fiber pull-out morphology. As a result, the composites exhibit quasi-brittle fracture behavior during the longitudinal tensile process.

Key wordscomposite    mechanical property    micromechanics    progressive damage
收稿日期: 2020-10-25     
ZTFLH:  TB331  
基金资助:国家自然科学基金(52162018);国家自然科学基金(51765045);航空科学基金(2019ZF056013);江西省自然科学基金(20202ACBL204010);国防基础科研计划(JCKY2018401C004)
作者简介: 刘丰华,男,1996年生,硕士生
Fiber typed/μmTensile strength/MPaYoung's modulus/GPaDensity/g·cm-3Elongation/%Poisson's ratio
M40J644003771.810.70.26
表1  石墨纤维M40J的基本性能参数
ElementsSiMgCuMnTiAl
Content0.39.5~11.00.10.150.15Bal.
表2  铝合金ZL301的化学成分
Fabric structureFabric size/mm

Yarn density

/bundle·cm-1

Yarn specification

Fabric weight

/kg

Fiber

content/%

3D orthogonal200×250×4

Warp:12

Weft:5

Warp yarn:M40 6K×3

Weft yarn:M40 6K×2

Z yarn:M40 6K×1

0.975

50
表3  三向正交织物编织工艺参数
图1  三向正交织物和三向正交CF/Al复合材料
图2  真空压力浸渗炉示意图
图3  三向正交CF/Al复合材料拉伸试样
图4  三向正交CF/Al复合材料的显微组织结构
图5  三向正交CF/Al复合材料细观结构几何模型的建模过程
图6  三向正交CF/Al复合材料的细观结构单胞几何模型
图7  改进后的PBC示意图
/MPa Emνm

σym

/MPa

EHm

/MPa

σum

/MPa

ε0pl

/%

εfpl

/%

817000.3379.024900130.00.160.80
表4  基体合金的弹性和塑性性能
E11f/GPaE22f/GPaυ12fυ23fG12f/GPaG23f/GPaXtf/MPaXcf/MPa
377190.260.38.97.31760900
表5  纤维的弹性和强度[24]
E11/MPaE22/MPaG12/MPaG23/MPaν12ν23
285460218401012083800.280.59
Xt/MPaXc/MPaYt/MPaYc/MPaS12/MPaS23/MPa
12407503411210016
表6  纱线的弹性常数与强度性能参数
tn0/MPats0/MPatt0/MPaΔ¯0/10-6mΔ¯f/10-6m
16.09.59.50.080.72
表7  细观力学模型中界面结合性能参数
图8  内聚力模型的牵引力-分离位移法则
图9  三向正交CF/Al复合材料拉伸应力-应变的计算曲线和试验曲线
Mechanical propertiesElastic moduli/GPaTensile strength/MPaFracture strain/%
Calculation116.82785.320.75
Experiments120.70771.750.83
Calculation error/%-3.211.75-9.63
表8  三向正交CF/Al复合材料拉伸力学性能的计算和试验结果
图10  三向正交CF/Al复合材料的拉伸损伤演化和失效过程
图11  三向正交CF/Al复合材料经向拉伸断口的形貌
1 Zhang X H, Hu X H, Guan S Y, et al. Fabrication methods, mechanical behavior and applications of boron/aluminum composites [J]. Aerosp. Mater. Technol., 2000, 30(1): 19
1 张绪虎, 胡欣华, 关盛勇 等. B/Al复合材料的制造、性能及应用 [J]. 宇航材料工艺, 2000, 30(1): 19
2 Rawal S P. Metal-matrix composites for space applications [J]. JOM, 2001, 53(4): 14
3 Shirvanimoghaddam K, Hamim S U, Akbari M K, et al. Carbon fiber reinforced metal matrix composites: fabrication processes and properties [J]. Composites, 2017, 92A: 70
4 Matsunaga T, Ogata K, Hatayama T, et al. Effect of acoustic cavitation on ease of infiltration of molten aluminum alloys into carbon fiber bundles using ultrasonic infiltration method [J]. Composites, 2007, 38A: 771
5 Zhang J J, Liu S C, Lu Y P, et al. Fabrication process and bending properties of carbon fibers reinforced Al-alloy matrix composites [J]. J. Mater. Process. Technol., 2016, 231: 366
doi: 10.1016/j.jmatprotec.2016.01.007
6 Wang X, Jiang D M, Wu G H, et al. Effect of Mg content on the mechanical properties and microstructure of Grf/Al composite [J]. Mater. Sci. Eng., 2008, 497A: 31
7 Wang Z J, Tian L, Cai C C, et al. Progressive damage and elastic-plastic behavior of CF/Al composites during transverse tensile process [J]. Chin. J. Nonferrous Met., 2019, 29: 458
7 王振军, 田 亮, 蔡长春 等. CF/Al复合材料横向拉伸渐进损伤与弹塑性力学行为研究 [J]. 中国有色金属学报, 2019, 29: 458
8 Zhou Y X, Yang W, Xia Y M, et al. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates [J]. Mat. Sci. Eng., 2003, 362A: 112
9 Jacquesson M, Girard A, Vidal-Sétif M H, et al. Tensile and fatigue behavior of al-based metal matrix composites reinforced with continuous carbon or alumina fibers: Part I. Quasi-unidirectional composites [J]. Metall. Mater. Trans., 2004, 35A: 3289
10 Wang Y G, Wang Y L, Wu G S. Preparation and mechanical properties of 3-D braided carbon composites [J]. J. Mater. Sci. Eng., 2004, 22: 344
10 王玉果, 王玉林, 吴广顺. 三维编织碳复合材料的制备及其力学性能研究 [J]. 材料科学与工程学报, 2004, 22: 344
11 Gao X. Study on the integrated performance of carbon fiber composites based on different three-dimensional woven structures [D]. Shanghai: Donghua University, 2017
11 高 雄. 基于不同三维机织结构的碳纤复合材料整体力学性能研究 [D]. 上海: 东华大学, 2017
12 Feng J P, Yu H, Xu Z F, et al. Microstructure and bending properties of three-dimensional orthogonal Cf/Al composites [J]. Spec. Cast. Nonferrous Alloys, 2020, 40: 202
12 冯景鹏, 余 欢, 徐志锋 等. 三维正交Cf/Al复合材料的显微组织与弯曲性能 [J]. 特种铸造及有色合金, 2020, 40: 202
13 Ahmed S, Zheng X T, Yan L L, et al. Influence of asymmetric hybridization on impact response of 3D orthogonal woven composites [J]. Compo. Sci. Technol., 2020, 199: 108326
doi: 10.1016/j.compscitech.2020.108326
14 Wan Y M, Sun B Z, Gu B H. Multi-scale structure modeling of damage behaviors of 3D orthogonal woven composite materials subject to quasi-static and high strain rate compressions [J]. Mech. Mater., 2016, 94: 1
doi: 10.1016/j.mechmat.2015.11.012
15 Naik N K, Azad N M, Prasad P D, et al. Stress and failure analysis of 3D orthogonal interlock woven composites [J]. J. Reinf. Plast. Compos., 2001, 20: 1485
doi: 10.1177/073168401772679110
16 Sun B Z, Liu Y K, Gu B H. A unit cell approach of finite element calculation of ballistic impact damage of 3-D orthogonal woven composite [J]. Composites, 2009, 40B: 552
17 Green S D, Matveev M Y, Long A C, et al. Mechanical modelling of 3D woven composites considering realistic unit cell geometry [J]. Compos. Struct., 2014, 118: 284
doi: 10.1016/j.compstruct.2014.07.005
18 Wu G H, Jiang L T, Chen G Q, et al. Research progress on the control of interfacial reactions in metal matrix composites [J]. Mater. China, 2012, 31(7): 51
18 武高辉, 姜龙涛, 陈国钦 等. 金属基复合材料界面反应控制研究进展 [J]. 中国材料进展, 2012, 31(7): 51
19 Ten X F, Shi D Q, Cheng Z, et al. Investigation on non-uniform strains of a 2.5D woven ceramic matrix composite under in-plane tensile stress [J]. J. Eur. Ceram. Soc., 2020, 40: 36
doi: 10.1016/j.jeurceramsoc.2019.08.030
20 Zhang C, Xu X W, Yan X. General periodic boundary conditions and their application to micromechanical finite element analysis of textile composites [J]. Acta Aeronaut. Astronaut. Sin., 2013, 34: 1636
20 张 超, 许希武, 严 雪. 纺织复合材料细观力学分析的一般性周期性边界条件及其有限元实现 [J]. 航空学报, 2013, 34: 1636
21 Wang Z J, Wang Z Y, Xiong B W, et al. Micromechanics analysis on the microscopic damage mechanism and mechanical behavior of graphite fiber-reinforced aluminum composites under transverse tension loading [J]. J. Alloys Compd., 2020, 815: 152459
doi: 10.1016/j.jallcom.2019.152459
22 Gao H X, Wei G Z, Zhang X Y, et al. Effect of mixture rare earth on microstructures and mechanical properties of ZL301 alloy [J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 973
22 高红选, 卫广智, 张晓燕 等. 混合稀土对ZL301合金组织及力学性能的影响 [J]. 特种铸造及有色合金, 2014, 34: 973
23 Hopkins D A, Chamis C C. A unique set of micromechanics equations for high-temperature metal matrix composites [A]. NASA TM 87154, Prepared for the First Symposium on Testing Technology of Metal Matrix Composites [C]. Sponsored by ASTM, Nashville, 1985: 18
24 Rossoll A, Moser B, Mortensen A. Tensile strength of axially loaded unidirectional Nextel 610TM reinforced aluminium: A case study in local load sharing between randomly distributed fibres [J]. Composites, 2012, 43A: 129
25 Dève H E. Compressive strength of continuous fiber reinforced aluminum matrix composites [J]. Acta Mater., 1997, 45: 5041
doi: 10.1016/S1359-6454(97)00174-2
26 Zhou J Q, Wang Z J, Yang S Y, et al. Damage evolution and fracture behaviors of continuous graphite fiber reinforced aluminium matrix composites subjected to quasi-static tensile loading [J]. Acta Mater. Compo. Sin., 2020, 37: 907
26 周金秋, 王振军, 杨思远 等. 连续石墨纤维增强铝基复合材料准静态拉伸损伤演化与断裂力学行为 [J]. 复合材料学报, 2020, 37: 907
27 Wang Y C, Huang Z M. Analytical micromechanics models for elastoplastic behavior of long fibrous composites: a critical review and comparative study [J]. Materials (Basel), 2018, 11: 1919
doi: 10.3390/ma11101919
28 Wang Z J, Yang S Y, Du Z H, et al. Micromechanical modeling of damage evolution and mechanical behaviors of CF/Al composites under transverse and longitudinal Tensile Loadings [J]. Materials (Basel), 2019, 12(19): 3133
doi: 10.3390/ma12193133
29 Xu Q, Qu S X. Irreversible deformation of metal matrix composites: A study via the mechanism-based cohesive zone model [J]. Mech. Mater., 2015, 89: 72
doi: 10.1016/j.mechmat.2015.06.003
30 Zhou Z Z, Xu Z F, Yu H, et al. Effects of braiding structures on microstructure and mechanical properties of 3D-Cf/Al composites [J]. Chin. J. Nonferrous Met., 2016, 26: 773
30 周珍珍, 徐志锋, 余 欢 等. 编织结构对3D-Cf/Al复合材料显微组织与力学性能的影响 [J]. 中国有色金属学报, 2016, 26: 773
31 Li D G, Chen G Q, et al. Effect of thermal cycling on the mechanical properties of Cf/Al composites [J]. Mater. Sci. Eng., 2013, 586A: 330
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.