Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (5): 381-393    DOI: 10.11901/1005.3093.2020.249
  研究论文 本期目录 | 过刊浏览 |
18.5%CrMn型节镍双相不锈钢大变形热压缩的组织和再结晶行为
潘晓宇, 杨银辉(), 倪珂, 曹建春, 钱昊
昆明理工大学材料科学与工程学院 昆明 650093
Microstructure and Recrystallization Behavior of 18.5%Cr High-Mn Low-Ni Type Duplex Stainless Steel during Hot Compression with Large Deformation
PAN Xiaoyu, YANG Yinhui(), NI Ke, CAO Jianchun, QIAN Hao
School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
引用本文:

潘晓宇, 杨银辉, 倪珂, 曹建春, 钱昊. 18.5%CrMn型节镍双相不锈钢大变形热压缩的组织和再结晶行为[J]. 材料研究学报, 2021, 35(5): 381-393.
Xiaoyu PAN, Yinhui YANG, Ke NI, Jianchun CAO, Hao QIAN. Microstructure and Recrystallization Behavior of 18.5%Cr High-Mn Low-Ni Type Duplex Stainless Steel during Hot Compression with Large Deformation[J]. Chinese Journal of Materials Research, 2021, 35(5): 381-393.

全文: PDF(8789 KB)   HTML
摘要: 

使用热模拟试验机在1123~1423 K/0.01~10 s-1变形条件下对18.5%对Cr高Mn节镍型双相不锈钢进行了变形量为70%的大变形热压缩,研究其在热变形过程中两相的亚结构特征和软化机理。结果表明,在0.01~0.1 s-1/1123~1223 K范围的热压缩软化以铁素体相的再结晶为主,而在0.1 s-1/1323~1423 K和10 s-1/1223 K范围的热压缩软化以奥氏体相的再结晶为主。在变形温度为1223 K、应变速率由0.01 s-1增大到10 s-1的条件下铁素体相内的位错缠结向胞状结构演化并出现位错线,奥氏体相内的亚结构则转变为细小的再结晶晶粒。应变速率为0.1 s-1、变形温度由1123 K提高到1323 K时铁素体相内的位错增加,变形晶粒向胞状组织演化而奥氏体相内的位错减少,由回复组织转变为再结晶组织。根据热变形方程计算出表观应力指数n=7.13,热变形激活能Q=514.29 kJ/mol,并建立了Z参数关系本构方程。根据加工硬化率得到再结晶临界条件,并确定了Z参数与再结晶临界条件的关系。对热加工图的分析结果表明,随着变形量的增大失稳区逐渐减小,最佳加工区域为1348~1423 K/1~10 s-1,功率耗散系数大于0.4。

关键词 金属材料双相不锈钢再结晶临界应变大变形热加工图    
Abstract

The 18.5% Cr low nickel type duplex stainless steel with high manganese content was compressed by using thermal simulation test machine with large deformation of 70% under deformation conditions of 1123~1423 K/0.01~0.1 s-1, while the microbstructure characteristics and softening mechanism of two phases during thermal deformation were investigated. The results show that the thermal compression softening in the range of 0.01~0.1 s-1/1123~1223 K was dominated by recrystallization of ferrite phase, while in the range of 0.1 s-1/1323~1423 K and 10 s-1/1223 K was dominated by recrystallization of austinite phase. When deformed at 1223 K and 0.01~10 s-1, the dislocation tangles in the ferrite phase evolved into dislocation cells and the dislocation lines appeared with the increase of strain rate, and the substructure of austenite phase transformed into fine recrystallized grains. When deformed at 0.1 s-1 and 1123~1323 K the substructure of the dislocation cells gradually formed due to the increase of dislocation density in ferrite phase with increasing deformation temperature, but the deformation microstructure in austenite phase changed from DRV to DRX with the decrease of dislocation density. The deformation apparent activation energy Q and the apparent stress exponent n were calculated as 514.29 kJ/mol and 7.13 respectively based on thermal deformation equation, and the constitutive equation with Z parameter was established. Meanwhile, the critical conditions of DRX have been obtained by the relationship between work hardening rate and flow stress, and the relationships between Z parameter and the critical conditions were also determined. The hot working map analysis shows that the instability zone gradually decreases with increasing deformation strain, and the optimal processing zones are within the range of 1348~1432 K/1~10 s-1, and corresponding values of power dissipation coefficient are above 0.4.

Key wordsmetallic materials    duplex stainless steel    recrystallization    critical strain    large deformation    hot working map
收稿日期: 2020-06-23     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(51461024)
作者简介: 潘晓宇,男,1995年生,硕士生
图1  工艺流程图
图2  应变速率相同、变形温度不同条件下的真应力-真应变曲线
图3  在不同应变速率和温度条件下试样的OM照片
图4  变形温度为1223K、不同应变速率条件下试样的TEM照片和电子衍射花样
图5  在应变速率为0.1 s-1、不同变形温度条件下试样的TEM照片和电子衍射花样
图6  在相同应变速、不同变形温度条件下试样的?2θ与σ的关系
图7  变形温度和应变速率对试样临界应变的影响
图8  试样的临界应力-峰值应力和临界应变-峰值应变关系
图9  热变形峰值应力与应变速率和变形温度的关系
图10  lnZ-ln[sinh(ασp)]关系曲线
图11  临界条件与Z参数的拟合
图12  不同应变试样的热加工图
1 Yang Y H, Yan B. The microstructure and flow behavior of 2205 duplex stainless steels during high temperature compression deformation [J]. Mater. Sci. Eng. A, 2013, 579: 194
2 Solomon H D, Devine T M. Duplex stainless steels [A]. Proceedings of Conference on Duplex Stainless Steels [C]. Metals Park, OH: ASM, 1983: 693
3 Momeni A, Abbasi S M, Shokuhfar A. Hot compression behavior of As-cast precipitation-hardening stainless steel [J]. J. Iron Steel Res. Int., 2007, 14: 66
4 Niewielski G, Radwanski K, Kuc D. The influence of hot-working processing on plasticity and structure of duplex steel [J]. Arch. Mater. Sci. Eng., 2007, 28: 325
5 Huang Y L, Wang J B, Ling X S, et al. Research development of hot processing map theory [J]. Mater. Rev., 2008, 22(suppl.3): 173
5 黄有林, 王建波, 凌学士等. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(): 173
6 Yang S L, Shen J, Chen L Y, et al. Dynamic evolution of microstructure of Al-Cu-Li alloy during hot deformation [J]. Chin. J. Nonferr. Met., 2019, 29: 674
6 杨胜利, 沈健, 陈利阳等. Al-Cu-Li合金热变形过程中微观组织的动态演变规律 [J]. 中国有色金属学报, 2019, 29: 674
7 Dehghan-Manshadi A, Hodgson P D. Effect of δ-ferrite co-existence on hot deformation and recrystallization of austenite [J]. J. Mater. Sci., 2008, 43: 6272
8 Fan G W, Liu J, Han P D, et al. Hot ductility and microstructure in casted 2205 duplex stainless steels [J]. Mater. Sci. Eng., 2009, 515A: 108
9 Cizek P, Wynne B P. A mechanism of ferrite softening in a duplex stainless steel deformed in hot torsion [J]. Mater. Sci. Eng. A, 1997, 230: 88
10 Li F L, Yang W Y, Sun Z Q. Influence of Mn content on dynamic recrystallization of ferrite in low carbon steels [J]. Acta Metall. Sin., 2004, 40: 1257
10 李龙飞, 杨王玥, 孙祖庆. Mn含量对低碳钢中铁素体动态再结晶的影响 [J]. 金属学报, 2004, 40: 1257
11 Zhou R F, Yang W Y, Sun Z Q. Ferrite transformation during deformation of undercooled austenite in low carbon steels with different Mn contents [J]. Acta Metall. Sin., 2004, 40: 1
11 周荣锋, 杨王玥, 孙祖庆. 不同Mn含量低碳钢过冷奥氏体形变过程中的铁素体相变 [J]. 金属学报, 2004, 40: 1
12 Kang J H, Heo S J, Yoo J, et al. Hot working characteristics of S32760 super duplex stainless steel [J]. J. Mech. Sci. Technol., 2019, 33: 2633
13 Pu C B, Yang Y H, Deng Y H, et al. Effect of hot deformation parameters on pitting corrosion behavior of 23Cr-6.2Mn-2.1Ni-0.28N low nickel duplex stainless steel [J]. Trans. Mater. Heat Treat., 2020, 41(4): 99
13 蒲超博, 杨银辉, 邓亚辉等. 热变形参数对23Cr-6.2Mn-2.1Ni-0.28N节Ni型双相不锈钢点蚀行为的影响 [J]. 材料热处理学报, 2020, 41(4): 99
14 Xu H J, Sha X C, Kang C, et al. Effect of solid solution treatment on microstructure and mechanical properties of low nickel 2101 duplex stainless steel [J]. Trans. Mater. Heat Treat., 2020, 41(2): 82
14 徐海健, 沙孝春, 康超等. 固溶处理对节镍型2101双相不锈钢组织及力学性能的影响 [J]. 材料热处理学报, 2020, 41(2): 82
15 Iza-Mendia A, Piñol-Juez A, Urcola J J, et al. Microstructural and mechanical behavior of a duplex stainless steel under hot working conditions [J]. Metall. Mater. Trans., 1998, 29A: 2975
16 Yuan X Y, Chen L Q. Hot deformation at elevated temperature and recrystallization behavior of a high manganese austenitic TWIP steel [J]. Acta Metall. Sin., 2015, 51: 651
16 袁晓云, 陈礼清. 一种高锰奥氏体TWIP钢的高温热变形与再结晶行为 [J]. 金属学报, 2015, 51: 651
17 Zhang F, Shen J, Xie J X, et al. Dynamic softening mechanism of 2099 alloy During hot deformation process [J]. Acta Metall. Sin., 2014, 50: 691
17 张飞, 沈健, 闫晓东等. 2099合金热变形过程中的动态软化机制 [J]. 金属学报, 2014, 50: 691
18 Yu J W, Liu X F, Xie J X. Study of dynamic recrystallization of a Cu-based alloy BFe10-1-1 with continuous columnar grains [J]. Acta Metall. Sin., 2011, 47: 482
18 余均武, 刘雪峰, 谢建新. 连续柱状晶铜基合金BFe10-1-1的动态再结晶研究 [J]. 金属学报, 2011, 47: 482
19 Chen G Q, Fu G S, Cheng Z C, et al. Determination of critical conditions of hot deformation dynamic recrystallization of 3003 aluminum alloy [J]. Trans. Mater. Heat Treat., 2017, 38(11): 133
19 陈贵清, 傅高升, 程超增等. 3003铝合金热变形动态再结晶临界条件的确定 [J]. 材料热处理学报, 2017, 38(11): 133
20 Cai Z W, Chen F X, Guo J Q, et al. Simulation of microstructure evolution of AZ41M magnesium alloy during dynamic recrystallization [J]. Trans. Mater. Heat Treat., 2016, 37(4): 216
20 蔡志伟, 陈拂晓, 郭俊卿等. AZ41M镁合金动态再结晶组织演变模拟 [J]. 材料热处理学报, 2016, 37(4): 216
21 Gao Z Y, Pan T, Wang Z, et al. Hot compressive deformation behavior of Ni-Cr-Mo-B heavy plate steel [J]. Trans. Mater. Heat Treat., 2015, 36(9): 148
21 高志玉, 潘涛, 王卓等. Ni-Cr-Mo-B特厚板钢的热压缩变形行为 [J]. 材料热处理学报, 2015, 36(9): 148
22 Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization [J]. Acta Mater., 1996, 44: 127
23 Chen L, Zhang Y J, Li F, et al. Modeling of dynamic recrystallization behavior of 21Cr-11Ni-N-RE lean austenitic heat-resistant steel during hot deformation [J]. Mater. Sci. Eng. A, 2016, 663: 141
24 Mirzadeh H, Najafizadeh A. Hot deformation and dynamic recrystallization of 17-4 PH stainless steel [J]. ISIJ Int., 2013, 53: 680
25 Mirzadeh H, Cabrera J M, Najafizadeh A, et al. EBSD study of a hot deformed austenitic stainless steel [J]. Mater. Sci. Eng. A, 2012, 538: 236
26 Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
27 Urcola J J, Sellars C M. A model for a mechanical equation of state under continuously changing conditions of hot deformation [J]. Acta Metall., 1987, 35: 2659
28 Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phys., 1944, 15: 22
29 Jonas J J, Sellars C M, Tegart W J M. Strength and structure under hot-working conditions [J]. Metall. Rev., 1969, 14: 1
30 Prasad Y V R K, Gegel H L, Doraivelu S M, et al. Modeling of dynamic material behavior in hot deformation: forging of Ti-6242 [J]. Metall. Trans. A, 1984, 15: 1883
31 Farnoush H, Momeni A, Dehghani K, et al. Hot deformation characteristics of 2205 duplex stainless steel based on the behavior of constituent phases [J]. Mater. Des., 2010, 31: 220
32 Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior [J]. Chin. J. Nonferr. Met., 2016, 26: 365
32 杨胜利, 沈健, 闫晓东. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制 [J]. 中国有色金属学报, 2016, 26: 365
33 Su Y S, Yang Y H, Cao J C, et al. Research on hot working behavior of low-nickel duplex stainless steel 2101 [J]. Acta Metall. Sin., 2018, 54: 485
33 苏煜森, 杨银辉, 曹建春等. 节Ni型2101双相不锈钢的高温热加工行为研究 [J]. 金属学报, 2018, 54: 485
34 Prasad Y V R K. Author's reply: dynamic materials model: Basis and principles [J]. Metall. Mater. Trans. A, 1996, 27: 235
35 Zhang J Q, Di H S, Mao K, et al. Processing maps for hot deformation of a high-Mn TWIP steel: a comparative study of various criteria based on dynamic materials model [J]. Mater. Sci. Eng. A, 2013, 587: 110
36 Zhao X, Yang X L, Jing T F. Processing maps for use in hot working of ductile iron [J]. J. Iron Steel Res. Int., 2011, 18: 48
37 Yue C X, Zhang L W, Liao S L, et al. Research on the dynamic recrystallization behavior of GCr15 steel [J]. Mater. Sci. Eng. A, 2009, 499: 177
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.