Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 251-258    DOI: 10.11901/1005.3093.2020.244
  研究论文 本期目录 | 过刊浏览 |
镍基高温合金定向凝固用陶瓷型壳粘砂反应
石振威1,2(), 郑伟1, 卢玉章1, 张功1, 申健1()
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学纳米科学技术学院 苏州 215123
Sand-burning Reaction of Ceramic Shell for Directional Solidification of Nickel-based Superalloy
SHI Zhenwei1,2(), ZHENG Wei1, LU Yuzhang1, ZHANG Gong1, SHEN Jian1()
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
引用本文:

石振威, 郑伟, 卢玉章, 张功, 申健. 镍基高温合金定向凝固用陶瓷型壳粘砂反应[J]. 材料研究学报, 2021, 35(4): 251-258.
Zhenwei SHI, Wei ZHENG, Yuzhang LU, Gong ZHANG, Jian SHEN. Sand-burning Reaction of Ceramic Shell for Directional Solidification of Nickel-based Superalloy[J]. Chinese Journal of Materials Research, 2021, 35(4): 251-258.

全文: PDF(19184 KB)   HTML
摘要: 

以合金表面粘砂比例和粗糙度为优化指标,采用多指标正交实验设计方法,通过极差分析研究了定向凝固用陶瓷型壳面层粒度配比和Cr2O3添加剂对铸件表面质量的影响。结果表明,铸件表面粘砂层的主要成分为Al2O3以及少量Cr、Ni等合金元素;调整陶瓷型壳面层的粒度级配能降低陶瓷型壳面层的孔隙率,使型壳面层形成致密的结构,从而减少在定向凝固过程中合金液向陶瓷型壳面层的渗入、减少铸件表面的物理粘砂;Cr2O3添加剂与型壳中的Al2O3反应生成的二元化合物Al2O3-Cr2O3或Al2O3-SiO2-Cr2O3三元系产物,抑制了合金中的活性元素(Ni、Ti、Al等)与型壳中游离的SiO2反应,从而减少铸件表面的化学粘砂、提高铸件的表面质量。

关键词 金属材料粘砂反应陶瓷型壳正交实验高温合金    
Abstract

The influence of the particle size ratio of the ceramic shell for directional solidification of superalloy and the Cr2O3 additive on the surface quality of castings was investigated by means of multi-index orthogonal experiment and the range analysis while taking the sand-burning on the surface quality and roughness of the resulted castings as the calibration. The results show that the main components of the sand-burning layer on the casting surface includes Al2O3 and elements Cr, Ni of the alloy. Adjusting the particle size gradation can reduce the porosity of the ceramic shell surface layer and then yield a dense shell surface layer, thereby reducing the penetration of the molten alloy into the ceramic shell surface layer during the directional solidification process and reducing the physical adhering sand on the surface of the casting. The addition of Cr2O3 additive can induce the reaction of Cr2O3 with Al2O3 in the shell resulting in the formation of the binary compound Al2O3-Cr2O3 or ternary compound Al2O3-SiO2-Cr2O3, which can inhibit the active elements (Ni, Ti, Al, etc.) in the casting react with free SiO2 in the ceramic shell to reduce the formation of Al2O3 on the casting surface, thereby reducing the chemical adhering sand on the casting surface and improving the casting surface quality.

Key wordsmetallic materials    sand-burning reactions    ceramic shell    orthogonal experiment    superalloy
收稿日期: 2020-06-19     
ZTFLH:  TG245  
基金资助:国家自然科学基金(51631008);国家重大科技专项(2017-Ⅶ-0008-0101),中国科学院重点部署项目(ZDRW-CN-2019-01)
作者简介: 申健,研究员,shenjian@imr.ac.cn,研究方向为镍基单晶高温合金
石振威,男,1989年生,硕士生
CCrCoWMoAlTiTaNi
0.112.09.04.02.03.44.04.9Bal.
表1  镍基高温合金的名义成分
Al2O3SiO2Fe2O3Na2O
95.154.070.060.19
表2  EC95粉化学成分
PowderD10/μmD50/μmD90/μm
W71.306.6911.26
W145.5512.3320.86
W281.6422.7067.56
Cr2O30.891.984.97
表3  型壳面层粉料的粒度分布
LevelFactor

A

(Fine powder)

B(W28)

C

(Cr2O3/kg)

D

(Temperature/℃)

11(W7)10.2900
21(W14)20.41000
3030.61100
表4  因素水平表
No.

A

/kg

B

/kg

C

/kg

D

/℃

Results
Sand-burning proportion/%Surface roughness Ra/μmPorosity/%
1W75.05.00.29000.782.218.16
23.36.60.410002.512.067.92
32.57.50.611003.172.644.21
4W145.05.00.411006.152.7917.73
53.36.60.69004.742.0516.08
62.57.50.210002.712.9014.26
7-10.00.610004.363.2717.31
810.00.211003.101.9323.74
910.00.49006.662.8126.22
表5  实验计划和实验结果
IndicatorFactorK1K2K3R
Sand-burning proportion/%A6.4613.6014.127.66
B11.2910.3512.542.19
C6.5915.3212.278.73
D12.189.5812.422.84
Surface roughness Ra/μmA6.917.758.001.09
B8.276.048.352.31
C7.047.667.950.91
D7.078.237.361.16
Porosity/%A20.2948.0767.2746.98
B43.2047.7444.694.54
C46.1651.8737.6014.27
D50.4639.4945.6810.97
表6  各指标的极差结果
图1  型壳面层的孔隙率
图2  优化组和常规组型壳面层的显微形貌
图3  优化组和常规组铸件的表面
图4  铸件表面粘砂层的SEM和EDS分析
图5  常规型壳浇注铸件粘砂层表面、优化型壳浇注铸件粘砂层表面、常规型壳浇注铸件光滑区域表面的SEM照片以及常规型壳浇注铸件光滑区域的EDS面扫图和优化型壳浇注铸件光滑区域表面的SEM照片
图6  型壳面层和型壳的XRD谱
图7  粘砂层的EDS线扫描图
ReactionsGf at 1800 K/kJ·mol-1
2Al+Cr2O3→Al2O3+2Cr-221.7
4Al+3SiO2→ 2Al2O3+3Si-105.3
Ti+SiO2→ TiO2+Si-47.6
表7  相关界面反应的吉布斯自由能
1 Shi C X, Zhong Z Y. Fifty Years of Surperalloy R&D in China 1956-2006 [M]. Beijing: Metallurgical Industry Press, 2006
1 师昌绪, 仲增墉. 中国高温合金五十年1956-2006 [M]. 北京: 冶金工业出版社, 2006
2 Liu L. The progress of investment casting of nickel-based superalloys [J]. Foundry, 2012, 61: 1273
2 刘林. 高温合金精密铸造技术研究进展 [J]. 铸造, 2012, 61: 1273
3 Shi C X, Zhong Z Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
3 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
4 Li A L, Cao L M, Xue M, et al. Study on interface behavior between single crystal alloy/Al2O3 mould shell [J]. Met. Hotwork. Technol., 2007, 36(5): 48
4 李爱兰, 曹腊梅, 薛明等. 单晶高温合金/Al2O3型壳界面行为研究 [J]. 热加工工艺, 2007, 36(5): 48
5 Zhang X F, Zhang F, Guo F F. Discussion about mechanism of sand adhering to casting parts and its quality control [J]. Hebei Metall., 2007, (2): 43
5 张学锋, 张方, 郭芳芳. 铸件粘砂机理及其质量控制浅析 [J]. 河北冶金, 2007, (2): 43
6 Venkat Y, Singh S, Das D K, et al. Effect of fine alumina in improving refractoriness of ceramic shell moulds used for aeronautical grade Ni-base Superalloy castings [J]. Ceram. Int., 2018, 44: 12030
7 Zhou P P, Wu G Q, Tao Y, et al. Microstructures and performance of CaO-based ceramic cores with different particle size distributions for investment casting [J]. Mater. Res. Express, 2018, 5: 025202
8 Qin Y X, Du A B, Zhang R, et al. Alumina-based ceramic core nano-composites for investment casting [J]. Rare Met. Mater. Eng., 2007, 36: 774
8 覃业霞, 杜爱兵, 张睿等. 精密铸造用氧化铝基复合陶瓷型芯 [J]. 稀有金属材料与工程, 2007, 36: 774
9 Wang R F, Liu Z Y, Lin M, et al. The effect of different minerals on the property of alumina ceramic cores [J]. Mater. Rev., 2012, 26(20): 115
9 王荣峰, 刘志义, 林茂等. 不同矿化剂对铝基陶瓷型芯性能的影响 [J]. 材料导报, 2012, 26(20): 115
10 Zhang L T, Cao L M, Liu G L, et al. Theory and Practice of Near Net-Shape Investment Casting [M]. Beijing: National Defense Industry Press, 2007
10 张立同, 曹腊梅, 刘国利等. 近净形熔模精密铸造理论与实践 [M]. 北京: 国防工业出社, 2007
11 Liu X F, Guo W J, Lou Y C, et al. Metal-mold reaction and heat conductivity of ceramic shell mold employed in directional solidification of nickel-base Superalloys [J]. Foundry, 2010, 59: 1293
11 刘孝福, 郭伟杰, 娄延春等. 高温合金定向凝固用陶瓷型壳的铸型反应和导热性 [J]. 铸造, 2010, 59: 1293
12 Simmonds S. Formation and avoidance of surface defects during casting and heat-treatment of single-crystal nickel-based Superalloys [D]. England: University of Leicester, 2014
13 Yao J S, Tang D Z, Liu X G, et al. Interaction between two Ni-base alloys and ceramic Moulds [J]. Mater. Sci. Forum, 2013, 747-748: 765
14 Li Q, Song J X, Wang D G, et al. Effect of Cr, Hf and temperature on interface reaction between nickel melt and silicon oxide core [J]. Rare Met., 2010, 30: 405
15 Chen X Y, Jin Z, Bai X F, et al. Effect of C on the interfacial reaction and wettability between A Ni-based Superalloy and ceramic Mould [J]. Acta Metall. Sin., 2015, 51: 853
15 陈晓燕, 金喆, 白雪峰等. C对一种镍基高温合金与陶瓷型壳界面反应及润湿性的影响 [J]. 金属学报, 2015, 51: 853
16 Reed R C. The Superalloys: Fundamentals and Applications [M]. New York: Cambridge University Press, 2006
17 Liang Y J, Che Y C. Thermochemical Data of Inorganics [M]. Shenyang: Northeastern University Press, 1993
17 梁英教, 车荫昌. 无机热力学数据手册 [M]. 沈阳: 东北大学出版社, 1993
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.