|
|
温度对6101铝合金导线拉伸性能的影响 |
宋文硕1, 宋竹满2, 罗雪梅2, 张广平2, 张滨1( ) |
1.东北大学 材料各向异性与织构教育部重点实验室 材料科学与工程学院 沈阳 110819 2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 |
|
Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires |
SONG Wenshuo1, SONG Zhuman2, LUO Xuemei2, ZHANG Guangping2, ZHANG Bin1( ) |
1. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China 2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China |
引用本文:
宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 温度对6101铝合金导线拉伸性能的影响[J]. 材料研究学报, 2020, 34(10): 730-736.
Wenshuo SONG,
Zhuman SONG,
Xuemei LUO,
Guangping ZHANG,
Bin ZHANG.
Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires[J]. Chinese Journal of Materials Research, 2020, 34(10): 730-736.
[1] |
Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29(7): 1364
|
[2] |
Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27(10): 821
|
[3] |
Karabay S, Uzman I. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor [J]. J. Mater. Process. Technol., 2005, 160(2): 174
|
[4] |
Hu J, Zhou T G, Li Z S, et al. Production status and development prospects of Al-Mg-Si alloy conductor [J]. Light Alloy Fabr. Technol, 2018, 46(01): 5
|
[4] |
胡静, 周天国, 李振山等. Al-Mg-Si合金导线的生产现状及其发展前景 [J]. 轻合金加工技术, 2018, 46(01): 5
|
[5] |
Li Y, Du X, Zhang Y, et al. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy [J]. Appl. Phys. A., 2018, 124(2)
|
[6] |
Yuan W, Liang Z. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor [J]. Mater. Des., 2011, 32(8-9): 4195
|
[7] |
Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng. A, 2012, 552:353
|
[8] |
Zhang H K. Study of the mechanical properties of Al-Si-Cu alloy under low temperature [J]. Sichuan Metall., 2013, 35(05): 51
|
[8] |
张洪坤. Al-Si-Cu合金低温力学性能的研究 [J]. 四川冶金, 2013, 35(05): 51
|
[9] |
Liu Y, Zhang X M, Li H Z, et al. Tensile properties of three kinds of aluminum alloys at low temperature [J]. Heat Treat. Met., 2007(01): 53
|
[9] |
刘瑛, 张新明, 李慧中等. 3种高强铝合金的低温拉伸力学性能研究 [J]. 金属热处理, 2007(01): 53
|
[10] |
Liu Y, Zhang X M, Li H Z, et al. Tensile properties of 2519 aluminum alloy at low temperature [J]. J. Cent. South Univ. (Sci. Technol.), 2006(04): 641
|
[10] |
刘瑛, 张新明, 李慧中等. 2519铝合金的低温拉伸力学性能 [J]. 中南大学学报(自然科学版), 2006(04): 641
|
[11] |
Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals [J]. Acta Metall. Mater., 1992, 40(8): 1803
|
[12] |
Abed F H, Voyiadjis G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J]. Acta Mech., 2005, 175(1-4): 1
|
[13] |
Lee W S, Lin C R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures [J]. Cryogenics, 2016, 79:26
|
[14] |
Lee W S, Chen T H, Huang S C. Impact deformation behaviour of Ti-6Al-4V alloy in the low-temperature regime [J]. J. Nucl. Mater., 2010, 402(1): 1
|
[15] |
Tomota Y, Lukas P, Harjo S, et al. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation [J]. Acta Mater., 2003, 51(3): 819
|
[16] |
Lee W S, Lin C F, Chen T H, et al. High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading [J]. J. Nucl. Mater., 2012, 420(1-3): 226
|
[17] |
Ye Y L, Yang Z, Xu X X, et al. Effects of Excess Mg and Si on the Properties of 6101 Conducting Wire and Its Mechanism [J]. Rare Metal Mat. Eng., 2016, 45(04): 968
|
[17] |
叶於龙, 杨昭, 徐雪璇等. 过量Mg、Si元素对6101电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45(04): 968
|
[18] |
Li Z, Li N, Wang D Z, et al. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy [J]. Sci. Rep., 2016, 6(1)
pmid: 28442706
|
[19] |
Taylor G I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical [J]. Proc. R. Soc. London, 1934, 145(855): 362
|
[20] |
Gutiérrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension [J]. Acta Mater., 2008, 56(17): 4682
|
[21] |
Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta Metall., 1984, 32(1): 57
|
[22] |
Dietze H D. Die Temperaturabhängigkeit der Versetzungsstruktur [J]. Z. Phys., 1952, 132(1): 107
|
[23] |
Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|