Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 730-736    DOI: 10.11901/1005.3093.2020.155
  研究论文 本期目录 | 过刊浏览 |
温度对6101铝合金导线拉伸性能的影响
宋文硕1, 宋竹满2, 罗雪梅2, 张广平2, 张滨1()
1.东北大学 材料各向异性与织构教育部重点实验室 材料科学与工程学院 沈阳 110819
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires
SONG Wenshuo1, SONG Zhuman2, LUO Xuemei2, ZHANG Guangping2, ZHANG Bin1()
1. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

宋文硕, 宋竹满, 罗雪梅, 张广平, 张滨. 温度对6101铝合金导线拉伸性能的影响[J]. 材料研究学报, 2020, 34(10): 730-736.
Wenshuo SONG, Zhuman SONG, Xuemei LUO, Guangping ZHANG, Bin ZHANG. Effect of Temperature on Tensile Properties of 6101 Al-alloy Wires[J]. Chinese Journal of Materials Research, 2020, 34(10): 730-736.

全文: PDF(10416 KB)   HTML
摘要: 

研究了6101铝合金单股导线在-70℃到70℃温度区间的拉伸性能。结果表明,6101铝合金导线在-70℃低温下具有较高的强度和较好的变形均匀性,但是随着变形温度的提高其屈服强度和强度极限都呈下降趋势。与在-70℃的拉伸性能相比,在70℃合金的强度极限和屈服强度分别降低了10.9%和9.3%。对应变硬化率和屈服强度与温度的相关性分析发现,在拉伸变形过程中合金样品的应变硬化率随着流变应力的增大和温度的升高呈下降趋势。晶格摩擦阻力极大的影响了合金的屈服强度,对比不同温度下6101合金的屈服强度增量的拟合计算结果与实验结果,得到了这种导线屈服强度增量与温度的关系,据此可预测此类导线在不同温度下的服役可靠性。

关键词 金属材料6101铝合金导线强度温度应变硬化率    
Abstract

Tensile properties of a single-strand conductor of 6101 Al-alloy were investigated in the temperature range from -70℃ to 70℃. It is found that the 6101 Al-alloy wire has high strength and good deformation uniformity at the low temperature (-70℃). However, the yield strength and the ultimate tensile strength of the alloy exhibited a decreasing trend with the increasing testing temperature. The ultimate tensile strength and the yield strength of the alloy at 70℃ decreased by 10.9% and 9.3%, respectively, comparing with those of the counterparts tested at -70℃. From the analysis on the correlation of the work hardening rate and the yield strength with the temperature, it is found that the strain hardening rate of the alloy decreased with the increasing flow stress and the raising temperatures. In addition, the lattice friction stress has a strong correlation with temperature, which is the main factor affecting the yield strength of the alloy. Based on the comparison of the fitting calculated increment of the yield strength of the alloy to the corresponding experimental results, a model about the relation between the yield strength of the alloy and the service temperature was obtained, by which the appropriate yield strength of the alloy at different service temperatures can be predicted.

Key wordsmetallic materials    6101 aluminum alloy conductor    strength    temperature    strain hardening rate
收稿日期: 2020-05-09     
ZTFLH:  TB31  
基金资助:国家自然科学基金(51671050);国家自然科学基金(51971060)
作者简介: 宋文硕,男,1996年生,硕士生
图1  6101铝合金导线的拉伸试样示意图
图2  6101铝合金导线原始样品的横截面和纵截面的透射电镜照片
图3  在不同温度下样品的工程应力-应变曲线和应变量为0.2%~0.35%条件下的真应力-应变曲线
图4  6101铝合金导线试样的拉伸强度极限、屈服强度和均匀伸长率与温度的关系
图5  在不同温度下拉伸样品断口的扫描电镜照片
图6  在-70℃和 70℃断口附近样品表面的SEM照片
图7  不同温度下应变硬化率θ与流变应力增量(σ-σ0.2)的关系
T/℃XYk1k2Formula of strain hardening rate
-7028.533891.67479.275θ=39181(1-σ/330)
-5026.133091.75184.521θ=41108(1-σ/323)
-2527.033461.68482.617θ=39408(1-σ/318)
2519.526631.76591.043θ=41311(1-σ/303)
5017.431712.378121.494θ=55656(1-σ/305)
7016.022471.73493.625θ=40586(1-σ/289)
表1  不同温度下样品拉伸参数
图8  不同温度下的k1/k2值
图9  样品屈服强度增量的实验值和计算值
[1] Karabay S. Influence of AlB2 compound on elimination of incoherent precipitation in artificial aging of wires drawn from redraw rod extruded from billets cast of alloy AA-6101 by vertical direct chill casting [J]. Mater. Des., 2008, 29(7): 1364
[2] Karabay S. Modification of AA-6201 alloy for manufacturing of high conductivity and extra high conductivity wires with property of high tensile stress after artificial aging heat treatment for all-aluminium alloy conductors [J]. Mater. Des., 2006, 27(10): 821
[3] Karabay S, Uzman I. Inoculation of transition elements by addition of AlB2 and AlB12 to decrease detrimental effect on the conductivity of 99.6% aluminium in CCL for manufacturing of conductor [J]. J. Mater. Process. Technol., 2005, 160(2): 174
[4] Hu J, Zhou T G, Li Z S, et al. Production status and development prospects of Al-Mg-Si alloy conductor [J]. Light Alloy Fabr. Technol, 2018, 46(01): 5
[4] 胡静, 周天国, 李振山等. Al-Mg-Si合金导线的生产现状及其发展前景 [J]. 轻合金加工技术, 2018, 46(01): 5
[5] Li Y, Du X, Zhang Y, et al. Influence of Sc on microstructure and mechanical properties of Al-Si-Mg-Cu-Zr alloy [J]. Appl. Phys. A., 2018, 124(2)
[6] Yuan W, Liang Z. Effect of Zr addition on properties of Al–Mg–Si aluminum alloy used for all aluminum alloy conductor [J]. Mater. Des., 2011, 32(8-9): 4195
[7] Zhou W W, Cai B, Li W J, et al. Heat-resistant Al-0.2Sc-0.04Zr electrical conductor [J]. Mater. Sci. Eng. A, 2012, 552:353
[8] Zhang H K. Study of the mechanical properties of Al-Si-Cu alloy under low temperature [J]. Sichuan Metall., 2013, 35(05): 51
[8] 张洪坤. Al-Si-Cu合金低温力学性能的研究 [J]. 四川冶金, 2013, 35(05): 51
[9] Liu Y, Zhang X M, Li H Z, et al. Tensile properties of three kinds of aluminum alloys at low temperature [J]. Heat Treat. Met., 2007(01): 53
[9] 刘瑛, 张新明, 李慧中等. 3种高强铝合金的低温拉伸力学性能研究 [J]. 金属热处理, 2007(01): 53
[10] Liu Y, Zhang X M, Li H Z, et al. Tensile properties of 2519 aluminum alloy at low temperature [J]. J. Cent. South Univ. (Sci. Technol.), 2006(04): 641
[10] 刘瑛, 张新明, 李慧中等. 2519铝合金的低温拉伸力学性能 [J]. 中南大学学报(自然科学版), 2006(04): 641
[11] Zerilli F J, Armstrong R W. The effect of dislocation drag on the stress-strain behavior of F.C.C. metals [J]. Acta Metall. Mater., 1992, 40(8): 1803
[12] Abed F H, Voyiadjis G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J]. Acta Mech., 2005, 175(1-4): 1
[13] Lee W S, Lin C R. Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures [J]. Cryogenics, 2016, 79:26
[14] Lee W S, Chen T H, Huang S C. Impact deformation behaviour of Ti-6Al-4V alloy in the low-temperature regime [J]. J. Nucl. Mater., 2010, 402(1): 1
[15] Tomota Y, Lukas P, Harjo S, et al. In situ neutron diffraction study of IF and ultra low carbon steels upon tensile deformation [J]. Acta Mater., 2003, 51(3): 819
[16] Lee W S, Lin C F, Chen T H, et al. High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading [J]. J. Nucl. Mater., 2012, 420(1-3): 226
[17] Ye Y L, Yang Z, Xu X X, et al. Effects of Excess Mg and Si on the Properties of 6101 Conducting Wire and Its Mechanism [J]. Rare Metal Mat. Eng., 2016, 45(04): 968
[17] 叶於龙, 杨昭, 徐雪璇等. 过量Mg、Si元素对6101电工导线性能影响及机制 [J]. 稀有金属材料与工程, 2016, 45(04): 968
[18] Li Z, Li N, Wang D Z, et al. Low temperature deformation behavior of an electromagnetically bulged 5052 aluminum alloy [J]. Sci. Rep., 2016, 6(1)
pmid: 28442706
[19] Taylor G I. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical [J]. Proc. R. Soc. London, 1934, 145(855): 362
[20] Gutiérrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behaviour under tension [J]. Acta Mater., 2008, 56(17): 4682
[21] Estrin Y, Mecking H. A unified phenomenological description of work hardening and creep based on one-parameter models [J]. Acta Metall., 1984, 32(1): 57
[22] Dietze H D. Die Temperaturabhängigkeit der Versetzungsstruktur [J]. Z. Phys., 1952, 132(1): 107
[23] Wu Z, Bei H, Pharr G M, et al. Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures [J]. Acta Mater., 2014, 81: 428
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.