|
|
基于水热反应制备SnO2纳米棒阵列 |
杨高元1, 向文灏2, 刘德政1, 屈俊豪1, 梁英1, 李望南1, 徐可1, 钟杰2, 黄福志2, 陈美华1( ), 梁桂杰1( ) |
1.湖北文理学院 低维光电材料与器件湖北省重点实验室 襄阳 441053 2.武汉理工大学 材料复合新技术国家重点实验室 武汉 430070 |
|
Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process |
YANG Gaoyuan1, XIANG Wenhao2, LIU Dezheng1, QU Junhao1, LIANG Ying1, LI Wangnan1, XU Ke1, ZHONG Jie2, HUANG Fuzhi2, CHEN Meihua1( ), LIANG Guijie1( ) |
1.Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China 2.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China |
引用本文:
杨高元, 向文灏, 刘德政, 屈俊豪, 梁英, 李望南, 徐可, 钟杰, 黄福志, 陈美华, 梁桂杰. 基于水热反应制备SnO2纳米棒阵列[J]. 材料研究学报, 2021, 35(4): 293-301.
Gaoyuan YANG,
Wenhao XIANG,
Dezheng LIU,
Junhao QU,
Ying LIANG,
Wangnan LI,
Ke XU,
Jie ZHONG,
Fuzhi HUANG,
Meihua CHEN,
Guijie LIANG.
Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process[J]. Chinese Journal of Materials Research, 2021, 35(4): 293-301.
1 |
Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J]. J. Am. Chem. Soc., 2009, 131: 6050
|
2 |
Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale, 2011, 3: 4088
|
3 |
Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Sci. Rep-UK., 2012, 2: 591
|
4 |
Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovski-tes [J]. Science, 2012, 338: 643
|
5 |
Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499: 316
|
6 |
Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13: 897
|
7 |
Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature, 2015, 517: 476
|
8 |
Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J]. Science, 2017, 356: 1376
|
9 |
Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13: 1
|
10 |
Sun C, Wu Z H, Yip H, et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells [J]. Adv. Energy Mater., 2016, 6: 1501534
|
11 |
Xu X B, Liu Z H, Zuo Z X, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode [J]. Nano Lett., 2015, 15: 2402
|
12 |
Zuo L, Guo H, Dequilettes D W, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells [J]. Sci. Adv., 2017, 3: e1700106
|
13 |
Son D Y, Im J H, Kim H S, et al. 11% Efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system [J]. J. Phys. Chem. C, 2014, 118: 16567
|
14 |
Hu G, Guo W, Yang X, et al. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect [J]. Nano Energy, 2016, 23: 27
|
15 |
Haque M A, Sheikh A D, Guan X, et al. Metal oxides as efficient charge transporters in perovskite solar cells [J]. Adv. Energy Mater., 2017: 1602803
|
16 |
Song J X, Hu W D, Wang X F, et al. HC(NH2)2PbI3 as thermally stable absorber for efficient ZnO-based perovskite solar cells [J]. J. Mater. Chem. A, 2016, 4: 8435
|
17 |
Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells [J]. Nat. Commun., 2013, 4: 2885
|
18 |
Li W Z, Zhang W, Stephan V R, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification [J]. Energy Environ. Sci., 2016, 9: 490.
|
19 |
Yang J, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO [J]. Chem. Mater., 2015, 27: 4229
|
20 |
Kilic C, Zunger A. Origins of coexistence of conductivity and transparency in SnO2 [J]. Phy. Rev. Lett., 2002, 88: 095501
|
21 |
Song J X, Zheng E Q, Bai J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3: 10837
|
22 |
Zhang C X, Deng X S, Zheng J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells [J]. Electrochim. Acta, 2018, 283: 1134
|
23 |
Liu C, Zhu R, Ng A, et al. Investigation of high performance TiO2 nanorod array perovskite solar cells [J]. J. Mater. Chem. A, 2017, 5: 15970
|
24 |
Mahmood K, Swain B S, Amassian A. 16.1% Efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays [J]. Adv. Energy Mater., 2015, 5: 1500568
|
25 |
Bi D, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells [J]. Nanoscale, 2013, 5: 11686
|
26 |
Zhao X Y, He P, et al. Bending durable and recyclable mesostructured perovskite solar cells based on superaligned ZnO nanorod electrode [J]. Solar RRL, 2018, 2: 1700194
|
27 |
Yang L, Wang X, Mai X, et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array [J]. J. Colloid Interf. Sci., 2019, 534: 459
|
28 |
Chen M M, Wan L, Kong M Q, et al. Influence of rutile-TiO2 nanorod arrays on Pb-free (CH3NH3)3Bi2I9-based hybrid perovskite solar cells fabricated through two-step sequential solution process [J]. J. Alloy. Compd., 2018, 738: 422.
|
29 |
Li S, Zhang P, Wang Y, et al. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition [J]. Nano Res., 2017, 010: 1092
|
30 |
Zhang X K, Rui Y C, Wang Y Q, et al. SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells [J]. J. Power Sources, 2018, 402: 460
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|