Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (4): 293-301    DOI: 10.11901/1005.3093.2020.143
  研究论文 本期目录 | 过刊浏览 |
基于水热反应制备SnO2纳米棒阵列
杨高元1, 向文灏2, 刘德政1, 屈俊豪1, 梁英1, 李望南1, 徐可1, 钟杰2, 黄福志2, 陈美华1(), 梁桂杰1()
1.湖北文理学院 低维光电材料与器件湖北省重点实验室 襄阳 441053
2.武汉理工大学 材料复合新技术国家重点实验室 武汉 430070
Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process
YANG Gaoyuan1, XIANG Wenhao2, LIU Dezheng1, QU Junhao1, LIANG Ying1, LI Wangnan1, XU Ke1, ZHONG Jie2, HUANG Fuzhi2, CHEN Meihua1(), LIANG Guijie1()
1.Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang 441053, China
2.State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
引用本文:

杨高元, 向文灏, 刘德政, 屈俊豪, 梁英, 李望南, 徐可, 钟杰, 黄福志, 陈美华, 梁桂杰. 基于水热反应制备SnO2纳米棒阵列[J]. 材料研究学报, 2021, 35(4): 293-301.
Gaoyuan YANG, Wenhao XIANG, Dezheng LIU, Junhao QU, Ying LIANG, Wangnan LI, Ke XU, Jie ZHONG, Fuzhi HUANG, Meihua CHEN, Guijie LIANG. Control of Morphology of SnO2 Nanorod Array by Hydrothermal Reaction Process[J]. Chinese Journal of Materials Research, 2021, 35(4): 293-301.

全文: PDF(19765 KB)   HTML
摘要: 

采用水热反应制备一维SnO2纳米棒阵列并表征其物相结构和微观形貌,研究了水热反应的核心工艺条件如前驱体浓度、反应时间、反应温度、反应次数以及前驱体中NaCl添加剂等对纳米棒阵列的生长和形貌的影响。结果表明:较低的前驱体浓度有利于制备大长径比的纳米棒;改变反应时间调控纳米棒的长度;改变反应温度和次数调控纳米棒的长度、直径和基底覆盖率;在前驱体中加入NaCl,可增强纳米棒的取向生长并降低其基底覆盖率。

关键词 无机非金属材料SnO2纳米棒阵列形貌调控取向生长水热工艺参数钙钛矿太阳能电池    
Abstract

One-dimensional SnO2 nanorod arrays (1D-SnO2 NRAs) have been synthesized through hydrothermal method. The influence of hydrothermal parameters such as precursor concentration, reaction time, temperature, number of reaction and NaCl addition on the growth and morphology of 1D-SnO2 NRAs were investigated by means of scanning electron microscopy with energy dispersive spectroscopy and X-ray diffractometer . The results show that the low precursor concentration is conducive to the preparation of nanorods with large aspect ratio, while the reaction time can selectively change the length of the nanorods. Interestingly, the growth of the nanorod array has apparent temperature sensitivity, that is, the rod length, diameter and substrate coverage all increase significantly as the reaction temperature increases. Furthermore, the NaCl additives in the precursor can favor the oriented growth, whilst restrain the substrate coverage of nanorods.

Key wordsinorganic non-metallic materials    SnO2 nanorod arrays    morphology control    oriented growth    hydrothermal process parameters    perovskite solar cells
收稿日期: 2020-04-26     
ZTFLH:  TB43  
基金资助:湖北省自然科学基金(2019CFB774);“机电汽车”湖北省优势特色学科群开放基金(XKQ2020024)
作者简介: 杨高元,男,1996年生,硕士生
向文灏,男,1997年生,本科生
图1  钙钛矿太阳能电池的工作示意图,其中ETL和HTL分别代表电子传输层和空穴传输层
图2  使用不同浓度前驱体生成的纳米棒阵列的XRD衍射谱和(101)晶面与(200)晶面的峰强比
图3  使用不同前驱体浓度生成的纳米棒阵列的SEM照片所对应的截面图
图4  不同反应时间生成的纳米棒阵列的XRD谱
图5  不同反应时间生成的纳米棒阵列表面和截面的SEM照片
图6  水热反应温度不同的纳米棒阵列的XRD衍射谱和(101)晶面与(200)晶面处的峰强比(b)
图7  反应温度不同的纳米棒阵列表面和截面的SEM照片
图8  反应次数不同的纳米棒阵列的XRD衍射谱(a)和(101)晶面与(200)晶面处的峰强比
图9  反应次数不同的纳米棒阵列表面和截面的SEM照片
图10  不同NaCl添加量的纳米棒阵列的XRD衍射图和(101)晶面与(200)晶面处的峰强比
图11  NaCl添加量不同的纳米棒阵列表面和截面的SEM照片
Hydrothermal conditionsSize and morphology parameters of SnO2 nanorod arrays
Precursor content/mg/100 mLR / nmL / nmL / RCoverage
7010606Increases significantly with precursor content
13020904.5
190271204.4
Reaction time/hR / nmL / nmL / RCoverage
1220904.5Does Not change much over time
17201206
20201708.5
Reaction temperature/℃R / nmL / nmL / RCoverage
18020904.5Increases significantly with reaction temperature
190351604.6
200452505.6
Number of reactions/cyclesR / nmL / nmL / RCoverage
120904.5Increases slightly with number of reactions
2401804.5
3582704.6
NaCl addition/mL/100 mLR / nmL / nmL /RCoverage
020904.5Decreases slightly with NaCl addition
2161006.3
4121109.2
表1  水热反应条件不同的SnO2纳米棒阵列的尺寸和形貌参数
1 Kojima A, Teshima K, Shirai Y, et al. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells [J]. J. Am. Chem. Soc., 2009, 131: 6050
2 Im J H, Lee C R, Lee J W, et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell [J]. Nanoscale, 2011, 3: 4088
3 Kim H S, Lee C R, Im J H, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% [J]. Sci. Rep-UK., 2012, 2: 591
4 Lee M M, Teuscher J, Miyasaka T, et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovski-tes [J]. Science, 2012, 338: 643
5 Burschka J, Pellet N, Moon S J, et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J]. Nature, 2013, 499: 316
6 Jeon N J, Noh J H, Kim Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells [J]. Nat. Mater., 2014, 13: 897
7 Jeon N J, Noh J H, Yang W S, et al. Compositional engineering of perovskite materials for high-performance solar cells [J]. Nature, 2015, 517: 476
8 Yang W S, Park B W, Jung E H, et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells [J]. Science, 2017, 356: 1376
9 Jiang Q, Zhao Y, Zhang X W, et al. Surface passivation of perovskite film for efficient solar cells [J]. Nat. Photonics, 2019, 13: 1
10 Sun C, Wu Z H, Yip H, et al. Amino-functionalized conjugated polymer as an efficient electron transport layer for high-performance planar-heterojunction perovskite solar cells [J]. Adv. Energy Mater., 2016, 6: 1501534
11 Xu X B, Liu Z H, Zuo Z X, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode [J]. Nano Lett., 2015, 15: 2402
12 Zuo L, Guo H, Dequilettes D W, et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells [J]. Sci. Adv., 2017, 3: e1700106
13 Son D Y, Im J H, Kim H S, et al. 11% Efficient perovskite solar cell based on ZnO nanorods: An effective charge collection system [J]. J. Phys. Chem. C, 2014, 118: 16567
14 Hu G, Guo W, Yang X, et al. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronic effect [J]. Nano Energy, 2016, 23: 27
15 Haque M A, Sheikh A D, Guan X, et al. Metal oxides as efficient charge transporters in perovskite solar cells [J]. Adv. Energy Mater., 2017: 1602803
16 Song J X, Hu W D, Wang X F, et al. HC(NH2)2PbI3 as thermally stable absorber for efficient ZnO-based perovskite solar cells [J]. J. Mater. Chem. A, 2016, 4: 8435
17 Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells [J]. Nat. Commun., 2013, 4: 2885
18 Li W Z, Zhang W, Stephan V R, et al. Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification [J]. Energy Environ. Sci., 2016, 9: 490.
19 Yang J, Siempelkamp B D, Mosconi E, et al. Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO [J]. Chem. Mater., 2015, 27: 4229
20 Kilic C, Zunger A. Origins of coexistence of conductivity and transparency in SnO2 [J]. Phy. Rev. Lett., 2002, 88: 095501
21 Song J X, Zheng E Q, Bai J, et al. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells [J]. J. Mater. Chem. A, 2015, 3: 10837
22 Zhang C X, Deng X S, Zheng J F, et al. Solution-synthesized SnO2 nanorod arrays for highly stable and efficient perovskite solar cells [J]. Electrochim. Acta, 2018, 283: 1134
23 Liu C, Zhu R, Ng A, et al. Investigation of high performance TiO2 nanorod array perovskite solar cells [J]. J. Mater. Chem. A, 2017, 5: 15970
24 Mahmood K, Swain B S, Amassian A. 16.1% Efficient hysteresis-free mesostructured perovskite solar cells based on synergistically improved ZnO nanorod arrays [J]. Adv. Energy Mater., 2015, 5: 1500568
25 Bi D, Boschloo G, Schwarzmüller S, et al. Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells [J]. Nanoscale, 2013, 5: 11686
26 Zhao X Y, He P, et al. Bending durable and recyclable mesostructured perovskite solar cells based on superaligned ZnO nanorod electrode [J]. Solar RRL, 2018, 2: 1700194
27 Yang L, Wang X, Mai X, et al. Constructing efficient mixed-ion perovskite solar cells based on TiO2 nanorod array [J]. J. Colloid Interf. Sci., 2019, 534: 459
28 Chen M M, Wan L, Kong M Q, et al. Influence of rutile-TiO2 nanorod arrays on Pb-free (CH3NH3)3Bi2I9-based hybrid perovskite solar cells fabricated through two-step sequential solution process [J]. J. Alloy. Compd., 2018, 738: 422.
29 Li S, Zhang P, Wang Y, et al. Interface engineering of high efficiency perovskite solar cells based on ZnO nanorods using atomic layer deposition [J]. Nano Res., 2017, 010: 1092
30 Zhang X K, Rui Y C, Wang Y Q, et al. SnO2 nanorod arrays with tailored area density as efficient electron transport layers for perovskite solar cells [J]. J. Power Sources, 2018, 402: 460
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.