Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (10): 793-800    DOI: 10.11901/1005.3093.2020.071
  研究论文 本期目录 | 过刊浏览 |
1 GPaTRIPBF钢的组织调控和强塑性机制
侯晓英(), 孙卫华, 金光宇, 王业勤, 郝亮, 曹光明, 任东, 殷继丽
山东钢铁集团日照有限公司 日照 276805
Microstructural Control and the Mechanism of Strength-ductility for 1 GPa Grade TRIP-assisted BF Steel
HOU Xiaoying(), SUN Weihua, JIN Guangyu, WANG Yeqin, HAO Liang, CAO Guangming, REN Dong, YIN Jili
Shandong Iron & Steel Group Rizhao Co. Ltd. , Rizhao 276805, China
引用本文:

侯晓英, 孙卫华, 金光宇, 王业勤, 郝亮, 曹光明, 任东, 殷继丽. 1 GPaTRIPBF钢的组织调控和强塑性机制[J]. 材料研究学报, 2020, 34(10): 793-800.
Xiaoying HOU, Weihua SUN, Guangyu JIN, Yeqin WANG, Liang HAO, Guangming CAO, Dong REN, Jili YIN. Microstructural Control and the Mechanism of Strength-ductility for 1 GPa Grade TRIP-assisted BF Steel[J]. Chinese Journal of Materials Research, 2020, 34(10): 793-800.

全文: PDF(3127 KB)   HTML
摘要: 

以节约化、经济化、轻量化为立足点,利用“TRIP效应”解决强塑性同步提高的矛盾,制备出一种1 GPa级TRIP型BF钢,研究了不同组织调控的微观形貌和强塑性机制。结果表明,合理的成分设计和将热轧初始组织调控为(20~30)%铁素体和(70~80)%针状贝氏体,有利于将最终成品的显微组织调控为(75~85)% BF和≥15%的第二相残γ组织,使1 GPa级TRIP型BF钢具有优良的综合性能。两相组织的合理配比及其形貌特征,对TRIP型BF钢的强塑性有显著的影响。在82%的BF组织基体中均匀分布着片层宽度为80~130 nm的第二相残γ组织,在两相协调变形机制作用下可达到优良的强塑性匹配:延伸率20.3%,强塑积达到22.0 GPa·%;当BF组织板条的宽度为0.15~0.45 μm且薄膜状残γ组织的宽度为50~90 nm时,强度达到1099 MPa,发生碰撞时剩余的残γ组织(约6%)发挥“TRIP效应”从而提高防撞件的吸能和安全性。

关键词 金属材料1 GPa级TRIP型BF钢组织调控强塑性机制    
Abstract

In order to pursue energy-saving, economic, lightweight as the goal, the so called transformation-induced plasticity (TRIP) effect was utilized to solve the contradiction for improving strength and plasticity simultaneously for steel products. Hence, following the above mentioned technology, a series of 1 GPa grade TRIP-assisted bainitic ferrite (BF) steel products were produced, while the microstructure, strength and ductility were investigated for steels subjected to various type of microstructural controlling. The results show that the steel with the microstructure composed of c.a. (75~85)% of bainitic ferrite and ≥15% of retained austenite may be acquired advantageously. For that purpose the reasonable chemical composition design and the initial hot-rolled steel was controlled to be with the microstructure composed of (20~30)% of ferrite and (70~80)% of needle-like bainite as the prerequisite, thereby, the comprehensive mechanical properties could be ensured for 1 GPa grade TRIP-assisted BF steel. The reasonable proportion of a dual phase structure and the morphology features have great influence on the strength and ductility of the TRIP-assisted BF steel. While the lamellar retained austenite with the width within the range of 80~130 nm were distributed uniformly in the matrix structure of 82% bainitic ferrite, through the compatible deformation between dual phases the excellent comprehensive mechanical properties were achieved, namely the elongation rate was 20.3%, and the product of tensile strength and ductility reached to 22.0 GPa· %. The strength reached to 1099 MPa when the lath width of bainitic ferrite was within the range of 0.15~0.45 μm and the width of lamellar-like retained austenites was within the range of 50~90nm. When the steel was subjected to a sudden collision the residual austenites(about 6%)may be induced to response a secondary TRIP effect so that to increase its energy absorption ability, hence improving the anti-collision ability of the relevant automobile parts.

Key wordsmetallic materials    1 GPa grade TRIP-assisted BF steel    microstructural control    the mechanism of strength and ductility
收稿日期: 2020-03-05     
ZTFLH:  TG111  
基金资助:山东省重点研发计划(2019TSLH0103)
Process

Hot rolling

process

Pickling-rolling process

Continuous annealing

process

Temper-rolling process

Soaking temperature

/℃

Rough rolling temperature

/℃

Final rolling temperature

/℃

Coiling temperature

/℃

Reductemperatureion amount

/%

Soaking temperature

/℃

Soaking time

/s

Aging temperature

/℃

Aging time

/s

Elongation

/%

1240~1260105086555060.009301203903600.7
1240~1260105086555060.009101203903600.7
1240~1260105086555060.009101203703600.7
表1  热轧、酸轧和连退工艺参数
图1  热轧初始扫描组织(工艺 Ⅱ)
Process

RP0.2

/MPa

Rm

/MPa

RP0.2/RmA80/%λ/%

Rm×A80

/GPa·%

Hot-rolled microstructureMicrostructure of TRIP-assisted BF steel
F/%B/%BF/%γ/%
I71510410.68718.65519.423777525
II76410820.70620.37222.020808218
76810990.69919.16721.030708515
表2  力学性能和各相组织的体积分数
图2  不同工艺条件下1 GPa级TRIP型BF钢的显微组织
图3  1 GPa级TRIP型BF钢中残余奥氏体的透射电镜照片(工艺Ⅰ)
图4  1 GPa级TRIP型BF钢中残余奥氏体的透射电镜照片(工艺Ⅱ)
图5  1 GPa级TRIP型BF钢中残余奥氏体的透射电镜照片(工艺Ⅲ)
图6  1 GPa级TRIP型BF钢的工程应力-应变曲线
图7  1 GPa级TRIP型BF钢大小角度晶界的EBSD分析结果
图8  基体中“位错塞积”的透射电镜照片(工艺Ⅱ)
[1] Wang C Y, Yang J, Chang Y, et al. Development trend and challenge of advanced high strength automobile steels [J]. Iron Steel, 2019, 54(2): 1
[1] 王存宇, 杨洁, 常颖等. 先进高强度汽车钢的发展趋势与挑战 [J]. 钢铁, 2019, 54(2): 1
[2] Sheinbaum-Pardo C. Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico [J]. Applied Energy, 2016, 174: 245
doi: 10.1016/j.apenergy.2016.04.107
[3] Yi H L, Sun L, Xiong X C. Challenges in the formability of the next generation of automotive steel sheets [J]. Mater. Sci. Technol., 2018, 34: 1112
doi: 10.1080/02670836.2018.1424383
[4] Zhao J W, Jiang Z Y. Thermomechanical processing of advanced high strength steels [J]. Progr. Mater. Sci., 2018, 94: 174
doi: 10.1016/j.pmatsci.2018.01.006
[5] Wang M M, Zhang X Y, Xiao Y R, et al. One of the key research progress of steels with high product of strength and elongation for automobiles: research progress of Q&P steel [J]. Trans. Mater. Heat Treat., 2019, 40(6): 11
[5] 王明明, 张晓妍, 肖亚茹等. 汽车用高强塑积钢关键研究进展之一: Q&P钢的研究进展 [J]. 材料热处理学报, 2019, 40(6): 11
[6] Jiang A J, Zhu Z F, Gao Q L, et al. Influence of quenching process on microstructure and mechanical properties of Q&P steel [J]. Iron Steel, 2019, 54(10): 80
[6] 蒋爱娟, 祝贞凤, 高千林等. 淬火制度对Q&P钢微观组织和力学性能的影响 [J]. 钢铁, 2019, 54(10): 80
[7] Sun B H, Fazeli F, Scott C, et al. The influence of silicon additions on the deformation behavior of austenite-ferrite duplex medium manganese steels [J]. Acta Mater., 2018, 148: 249
doi: 10.1016/j.actamat.2018.02.005
[8] Hou X Y, Bi Y J, Hao L. Analysis on microstructure and strengthening mechanisms of hot-rolled TRIP980 steel [J]. Iron Steel, 2019, 54(4): 63
[8] 侯晓英, 毕永杰, 郝亮. 热轧TRIP980钢微观组织及强化机制分析 [J]. 钢铁, 2019, 54(4): 63
[9] Li Z, Kiran R, Hu J, et al. Analysis and design of a three-phase TRIP steel microstructure for enhanced fracture resistance [J]. Int. J. Fract., 2020, 221: 53
doi: 10.1007/s10704-019-00405-6
[10] Yang L, Fang H S, Meng Z H. Kinetics of Austenitic Isothermal Decomposition and Mn Partition in Fe-C-Mn-B Alloys [J]. Acta Metall. Sin., 1992, 28(1): 16
[10] 杨柳, 方鸿生, 孟至和. Fe-C-Mn-B合金奥氏体等温分解动力学及Mn的再分配 [J]. 金属学报, 1992, 28(1): 16
[11] Wang K K. Microstructure and mechanical properties optimization of bainitic rail steels [D]. Beijing: Beijing Jiaotong University, 2017
[11] 王凯凯. 贝氏体钢轨钢组织调控与性能优化 [D]. 北京: 北京交通大学, 2017
[12] Zhao H, Shi J, Li N, et al. Effects of Si on the microstructure and mechanical property of medium Mn steel treated by quenching and partitioning process [J]. Chin. J. Mater. Res., 2011, 25: 45
[12] 赵晖, 时捷, 李楠等. Si对中锰钢淬火配分组织和性能的影响 [J]. 材料研究学报, 2011, 25: 45
[13] Matlock D K, Bräutigam V E, Speer J G. Application of the quenching and partitioning (Q&P) process to a medium-carbon, high-Si microalloyed bar steel [J]. Mater. Sci. Forum, 2003, 426-432: 1089
doi: 10.4028/www.scientific.net/MSF.426-432
[14] Chowdhury S G, Pereloma E V, Santos D B. Evolution of texture at the initial stages of continuous annealing of cold rolled dual-phase steel: effect of heating rate [J]. Mater. Sci. Eng. A, 2008, 480: 540
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.