Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 845-852    DOI: 10.11901/1005.3093.2020.070
  研究论文 本期目录 | 过刊浏览 |
回火温度对两相区退火海工钢组织和性能的影响
张翔云1, 李激光1(), 严玲2, 何煦泽1, 郭菁1
1.辽宁科技大学材料与冶金学院 鞍山 114051
2.海洋装备用金属材料及其应用国家重点实验室 鞍山 114009
Effect of Tempering Temperature on Microstructure and Properties of Intercritical Annealing Marine Steel
ZHANG Xiangyun1, LI Jiguang1(), YAN Ling2, HE Xuze1, GUO Jing1
1.School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
2.State Key Laboratory of Metal Materials for Marine Equipment and Applications, Anshan 114009, China
引用本文:

张翔云, 李激光, 严玲, 何煦泽, 郭菁. 回火温度对两相区退火海工钢组织和性能的影响[J]. 材料研究学报, 2020, 34(11): 845-852.
Xiangyun ZHANG, Jiguang LI, Ling YAN, Xuze HE, Jing GUO. Effect of Tempering Temperature on Microstructure and Properties of Intercritical Annealing Marine Steel[J]. Chinese Journal of Materials Research, 2020, 34(11): 845-852.

全文: PDF(6511 KB)   HTML
摘要: 

对690 MPa级海工钢进行“淬火+两相区退火+回火”三步热处理,研究了回火温度对其组织和性能的影响、分析了力学性能变化与组织演变和残余奥氏体体积分数之间的关系。结果表明:回火后实验钢的显微组织为回火贝氏体/马氏体、临界铁素体和残余奥氏体的混合组织。随着回火温度的提高贝氏体/马氏体和临界铁素体逐渐分解成小尺寸晶粒,而残余奥氏体的体积分数逐渐增加;屈服强度由787 MPa降低到716 MPa,塑性和低温韧性明显增强,断后伸长率由20.30%增至29.24%,-40℃下的冲击功由77 J提升至150 J。残余奥氏体体积分数的增加引起裂纹扩展功增大,是低温韧性提高的主要原因。贝氏体/马氏体的分解和残余奥氏体的生成,引起组织细化、晶粒内低KAM值位错的比例逐渐提高和小角度晶界峰值的频率增大,使材料的塑性和韧性显著提高。

关键词 金属材料海工钢两相区退火残余奥氏体低温韧性    
Abstract

The influence of tempering temperature on microstructure and mechanical properties of 690 MPa grade marine steel after quenching + intercritical annealing + tempering three-step heat treatment was investigated in terms of the microstructure evolution, the volume fraction of retained austenite and the change in mechanical properties. The results show that the microstructure of the steel after tempering is a mixture of tempered bainite/martensite, intercritical ferrite and retained austenite. With the increasing tempering temperature, bainite/martensite and intercritical ferrite gradually decomposed into small grains, while the volume fraction of retained austenite gradually increased. Yield strength decreased from 787 MPa to 716 MPa. Plasticity and low temperature toughness were significantly enhanced, elongation after fracture increased from 20.30% to 29.24%, and impact energy at -40℃ increased from 77 J to 150 J. The increase of the volume fraction of retained austenite lead to the increase of crack propagation work, which was the main cause responsible to the improvement of low temperature toughness. The decomposition of bainite/martensite and the formation of retained austenite lead to grain refinement, the number of dislocations with low KAM values in the grains increased, and the frequency of low angle grain boundary peaks increased, which may be beneficial to the significant increment of plasticity and toughness of the steel.

Key wordsmetallic materials    offshore steel    intercritical annealing    retained austenite    low temperature toughness
收稿日期: 2020-03-05     
ZTFLH:  TG156.5  
基金资助:国家自然科学基金(U1860112);海洋装备用金属材料及其应用国家重点实验室和辽宁科技大学联合基金(SKLMEA-USTL-201701)
作者简介: 张翔云,男,1994年生,硕士生
图1  实验钢的热处理工艺示意图
图2  在不同温度回火后实验钢的SEM照片
图3  T640试样中残余奥氏体的TEM照片、在不同温度回火试样的衍射谱和残余奥氏体的体积分数
Sample

Rp0.2

/MPa

Rm

/MPa

A

/%

Z

/%

KV2(-40℃)

/J

T58078793820.305877
T60077990021.2862104
T62070885724.0268128
T64071681229.2473150
表1  在不同温度回火后实验钢的力学性能
图4  不同工艺和冲击温度试样的示波冲击位移-载荷和位移-吸收能量曲线
图5  在不同温度回火后实验钢的局部取向差图
图6  在不同温度回火后实验钢的晶界分布
图7  在不同温度回火后实验钢的取向差角分布
1 Sun X J, Yuan S F, Xie Z J, et al. Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel: the significance of multiphase microstructure [J]. Mater. Sci. Eng., 2017, 689A: 212
2 Yang C F, Zhang Y Q. New generation of HSLA steels for naval structures [J]. Iron Steel, 2001, 36(11): 52
2 杨才福, 张永权. 新一代易焊接高强度高韧性船体钢的研究 [J]. 钢铁, 2001, 36(11): 52
3 Speer J, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensite transformation [J]. Acta Mater., 2003, 51: 2611
4 Lee H, Jo M C, Sohn S S, et al. Novel medium-Mn (austenite+martensite) duplex hot-rolled steel achieving 1.6 Gpa strength with 20% ductility by Mn-segregation-induced TRIP mechanism [J]. Acta Mater., 2018, 147: 247
5 Suh D W, Park S J, Lee T H, et al. Influence of Al on the microstructural evolution and mechanical behavior of low-carbon, manganese transformation-induced-plasticity steel [J]. Metall. Mater. Trans., 2010, 41A: 3978
6 Lei M, Guo Y Y. Formation of precipitated austenite in 9% Ni steel and its function at cryogenic temperature [J]. Acta Metall. Sin., 1989, 25(1): 13
6 雷鸣, 郭蕴宜. 9%Ni钢中沉淀奥氏体的形成过程及其在深冷下的表现 [J]. 金属学报, 1989, 25(1): 13
7 Zhang F T, Wang J Y, Guo Y Y. On the relationship between return austenite and toughness for Ni9 steel at cryogenic temperatures [J]. Acta Metall. Sin., 1984, 20: 405
7 张弗天, 王景韫, 郭蕴宜. Ni9钢中的回转奥氏体与低温韧性 [J]. 金属学报, 1984, 20: 405
8 Zhang X Y, Li J G, Yan L, et al. Effect of film-like retained austenite on low temperature toughness of high strength offshore steel [J]. Mater. Res. Expr., 2019, 6: 116530
9 Huang L, Deng X T, Liu J, et al. Relationship between retained austenite stability and cryogenic impact toughness in 0.12C-3.0Mn low carbon medium manganese steel [J]. Acta Metall. Sin., 2017, 53: 316
9 黄龙, 邓想涛, 刘佳等. 0.12C-3.0Mn低碳中锰钢中残余奥氏体稳定性与低温韧性的关系 [J]. 金属学报, 2017, 53: 316
10 Xie Z J, Shang C J, Zhou W H, et al. Effect of retained austenite on ductility and toughness of a low alloyed multi-phase steel [J]. Acta Metall. Sin., 2016, 52: 224
10 谢振家, 尚成嘉, 周文浩等. 低合金多相钢中残余奥氏体对塑性和韧性的影响 [J]. 金属学报, 2016, 52: 224
11 Zhou W H, Xie Z J, Guo H, et al. Regulation of multi-phase microstructure and mechanical properties in a 700 MPa grade low carbon low alloy steel with good ductility [J]. Acta Metall. Sin., 2015, 51: 407
11 周文浩, 谢振家, 郭晖等. 700 MPa级高塑低碳低合金钢的多相组织调控及性能 [J]. 金属学报, 2015, 51: 407
12 Zhou Y L, Jia T, Zhang X J, et al. Investigation on tempering of granular bainite in an offshore platform steel [J]. Mater. Sci. Eng., 2015, 626A: 352
13 Hidalgo J, Findley K O, Santofimia M J. Thermal and mechanical stability of retained austenite surrounded by martensite with different degrees of tempering [J]. Mater. Sci. Eng., 2017, 690A: 337
14 Xi X H, Wang J L, Li X, et al. The role of intercritical annealing in enhancing low-temperature toughness of Fe-C-Mn-Ni-Cu structural steel [J]. Metall. Mater. Trans., 2019, 50A: 2912
15 Xi X H, Wang J L, Chen L Q, et al. Tailoring mechanical properties of a low carbon Cu-containing structural steel by two-step intercritical heat treatment [J]. Met. Mater. Int., 2019, 25: 1477
16 Xi X H, Wang J L, Chen L Q, et al. Understanding the role of copper addition in low-temperature toughness of low-carbon, high-strength steel [J]. Metall. Mater. Trans., 2019, 50A: 5627
17 Santofimia M J, Nguyen-Minh T, Zhao L, et al. New low carbon Q&P steels containing film-like intercritical ferrite [J]. Mater. Sci. Eng., 2010, 527A: 6429
18 Chen J, Lv M Y, Tang S, et al. Correlation between mechanical properties and retained austenite characteristics in a low-carbon medium manganese alloyed steel plate [J]. Mater. Charact., 2015, 106: 108
19 Lai G Y, Wood W E, Clark R A, et al. The effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel [J]. Metall. Trans., 1974, 5: 1663
20 Yu H, Zhang D D, Xiao R T, et al. Effect of tempering temperature on low angle grain boundaries in Q960 steel [J]. J. Univ. Sci. Technol. Beijing, 2011, 33: 952
20 于浩, 张道达, 肖荣亭等. 回火温度对Q960钢小角度晶界的影响 [J]. 北京科技大学学报, 2011, 33: 952
21 Kamaya M, Wilkinson A J, Titchmarsh J M. Measurement of plastic strain of polycrystalline material by electron backscatter diffraction [J]. Nucl. Eng. Des., 2005, 235: 713
22 Liu J L, Xue F, Ji S K. EBSD study of a high strength low yield ratio steel with dual phase structure [J]. J. Chin. Electr. Microsc. Soc., 2006, 25(suppl.1): 360
22 刘俊亮, 薛菲, 季思凯. 一种双相组织的高强度低屈强比钢的EBSD研究 [J]. 电子显微学报, 2006, 25(): 360
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.