Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (11): 853-860    DOI: 10.11901/1005.3093.2020.075
  研究论文 本期目录 | 过刊浏览 |
(氯异丙基)磷酸酯在蒙脱石表面吸附机理的模拟计算
刘珊珊1, 兰艳花3, 杨荣杰2(), 周智明1
1.北京理工大学化学与化工学院 北京 100081
2.北京理工大学材料学院 北京 100081
3.中北大学环境与安全工程学院 太原 030051
Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite
LIU Shanshan1, LAN Yanhua3, YANG Rongjie2(), ZHOU Zhiming1
1.School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
2.School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
3.School of Environmental and Safety Engineering, North University of China, Taiyuan 030051, China
引用本文:

刘珊珊, 兰艳花, 杨荣杰, 周智明. 三(氯异丙基)磷酸酯在蒙脱石表面吸附机理的模拟计算[J]. 材料研究学报, 2020, 34(11): 853-860.
Shanshan LIU, Yanhua LAN, Rongjie YANG, Zhiming ZHOU. Simulation Calculation for Adsorption Mechanism of Tris (chloroisopropyl) Phosphate on Surface of Montmorillonite[J]. Chinese Journal of Materials Research, 2020, 34(11): 853-860.

全文: PDF(6490 KB)   HTML
摘要: 

基于密度泛函理论研究了三(氯异丙基)磷酸酯(TCPP)与钠基蒙脱石(NaMMT)凝胶化的机理,在微观水平上建立TCPP和NaMMT的分子模型并计算了在无水和有水状态下TCPP在NaMMT的001表面以及晶层间的吸附参数。结果表明,TCPP在NaMMT的001表面和晶层间均能通过物理作用稳定吸附,钠离子有利于TCPP在NaMMT表面的吸附。在有水分子状态下TCPP与水分子在NaMMT表面协同吸附,水分子作为“桥梁”将TCPP与NaMMT表面连接起来,增强了它们之间的相互作用。实验结果亦表明,水分能明显提高TCPP与NaMMT的凝胶化速度。NaMMT与TCPP通过强相互作用自发溶胀形成物理交联结构,吸收大量的TCPP液体。水分增强了体系的相互作用,使交联网络更容易形成,从而加速凝胶化过程。

关键词 无机非金属材料三(氯异丙基)磷酸酯蒙脱石吸附模拟    
Abstract

To explore the gelation mechanism of tris (chloroisopropyl) phosphate (TCPP) and sodium montmorillonite (NaMMT), the molecular models of TCPP and NaMMT at the micro level were established based on the density functional theory method, The adsorption parameters of TCPP on 001 lattice plane and interplanar of NaMMT in anhydrous and hydrous conditions were calculated. The results show that TCPP can stably adsorb on the 001 lattice plane and interplanar of NaMMT through physical force. And sodium ions are beneficial to the adsorption of TCPP on NaMMT surface. In the presence of water molecules TCPP and water molecule on the surface of NaMMT exhibit synergistic adsorption, and water molecules serve as "bridges" to connect TCPP and NaMMT surfaces, enhancing interaction between them. Experimental research also shows that water can significantly accelerate the gelation rate of TCPP and NaMMT. NaMMT and TCPP swell spontaneously through strong interaction to form a physical cross-linked structure, and then the network can absorb a large amount of TCPP liquid, and water molecules enhance the interaction of the system, making the cross-linked network easier to form, which accelerate the gelation process.

Key wordsinorganic non-metallic materials    tris (chloroisopropyl) phosphate    montmorillonite    adsorption    simulation
收稿日期: 2020-03-11     
ZTFLH:  O641  
基金资助:国家国际科技合作专项(2014DFA52900)
作者简介: 刘珊珊,女,1994年生,硕士生
图1  NaMMT晶体的球棍模型
图2  TCPP的分子结构和模拟结构
图3  NaMMT的Na-001表面和None-001表面
图4  TCPP在Na-001、None-001表面和晶层间吸附的最优吸附构型
SystemSurfaceAdsorbentsStructureEads/kJ·mol-1
NaMMT-TCPPNa-001TCPPM(Na-001)T-101.85
None-001TCPPM(None-001)T-92.39
InterlayerTCPPM(Inter)T-81.26
NaMMT-H2ONa-001H2OM(Na-001)W-134.74
None-001H2OM(None-001)W-105.18
InterlayerH2OM(Inter)W-94.15
NaMMT-TCPP-H2ONa-001H2O/TCPPM(Na-001)TW-139.44
None-001H2O/TCPPM(None-001)TW-130.48
InterlayerH2O/TCPPM(Inter)TW-94.61
表1  吸附质在Na-001和None-001表面和晶层间的吸附能
M(Na-001)TM(None-001)TM(Inter)T
BondBond length/nmBondBond length/nmBondBond length/nm
Na1-Cl13.673Cl1-O13.510Cl1-O13.759
Cl1-O13.623Cl2-O23.763Cl2-O23.688
Cl2-O23.972H1-O33.258H1-O32.401
--P-O42.876H2-O42.735
----H3-O53.237
表2  不同系统中的成键情况和键长
图5  Na、Cl原子的态密度
图6  Cl、O原子的态密度
图7  H、O原子的态密度
图8  水分对TCPP与NaMMT凝胶化的影响
图9  一个H2O分子在Na-001、None-001和晶层间吸附的最优构型
图10  H2O/TCPP在三个不同表面吸附的最优构型
M(Na-001) TWM(None-001) TWM(Inter)TW
BondBond length/nmBondBond length/nmBondBond length/nm
Na-O3.026H-O2.610H-O3.041
H-O2.821H-O2.027
H-O2.634H-O2.562H-O2.790
H-O2.790H-O2.593
H-O2.734H-O2.402H-O2.762
H-O2.530
表3  NaMMT-TCPP-H2O系统中的键长
1 Tortora M, Gorrasi G, Vittoria V, et al. Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites [J]. Polymer, 2002, 43: 6147
2 Paul M A, Alexandre M, Degée P, et al. New nanocomposite materials based on plasticized poly(l-lactide) and organo-modified montmorillonites: thermal and morphological study [J]. Polymer, 2003, 44: 443
3 Wallis P J, Chaffee A L, Gates W P, et al. Partial exchange of Fe(III) montmorillonite with hexadecyltrimethylammonium cation increases catalytic activity for hydrophobic substrates [J]. Langmuir, 2010, 26: 4258
4 Li N, Ma J Z, Bao Y. Development on modification of montmorillonite [J]. Chem. Res., 2009, 20(1): 98
4 李娜, 马建中, 鲍艳. 蒙脱土改性研究进展 [J]. 化学研究, 2009, 20(1): 98
5 Costache M C, Heidecker M J, Manias E, et al. The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene [J]. Polymer, 2007, 48: 6532
6 Bee S T, Hassan A, Ratnam C T, et al. Investigation of nano-size montmorillonite on electron beam irradiated flame retardant polyethylene and ethylene vinyl acetate blends [J]. Nucl. Instrum. Methods Phys. Res., 2013, 299: 42
7 Shen Z Q, Chen L, Lin L, et al. Synergistic effect of layered nanofillers in intumescent flame-retardant EPDM: montmorillonite versus layered double hydroxides [J]. Ind. Eng. Chem. Res., 2013, 52: 8454
8 Ma H Y, Tong L F, Xu U Z, et al. Intumescent flame retardant-montmorillonite synergism in ABS nanocomposites [J]. Appl. Clay Sci., 2008, 42: 238
9 Yi D Q, Yang H X, Zhao M, et al. A novel, low surface charge density, anionically modified montmorillonite for polymer nanocomposites [J]. RSC Adv., 2017, 7: 5980
10 Huang G B, Gao J R, Li Y J, et al. Functionalizing nano-montmorillonites by modified with intumescent flame retardant: Preparation and application in polyurethane [J]. Polym. Degradat. Stabil., 2010, 95: 245
11 Liu S S, Zhou Z M, Yang R J. Gelation and nanostructure of tris (chloroisopropyl) phosphate and sodium montmorillonite [J]. J. Chin. Ceram. Soc., 2019, 48: 283
11 刘珊珊, 周智明, 杨荣杰. 三(氯异丙基)磷酸酯与钠基蒙脱石的凝胶化及其纳米结构 [J]. 硅酸盐学报, 2019, 48: 283
12 Escamilla-Roa E, Huertas F J, Hernández-Laguna A, et al. A DFT study of the adsorption of glycine in the interlayer space of montmorillonite [J]. Phys. Chem. Chem. Phys., 2017, 19: 14961
13 Ning H, Tao X M, Wang M M, et al. Density functional theory study on hydrogen adsorption on Be(0001) surface [J]. Acta Phys. Chim. Sin., 2010, 26: 2267
13 宁华, 陶向明, 王芒芒等. 氢原子在Be(0001)表面吸附的密度泛函理论研究 [J]. 物理化学学报, 2010, 26: 2267
14 Peng C L, Min F F, Liu L Y, et al. The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: A DFT study [J]. Surf. Interf. Anal., 2016, 49: 267
15 Boek E S, Coveney P V, Skipper N T. Molecular modeling of clay hydration: a study of hysteresis loops in the swelling curves of sodium montmorillonites [J]. Langmuir, 1995, 11: 4629
16 Boek E S, Coveney P V, Skipper N T. Monte Carlo molecular modeling studies of hydrated Li-, Na-, and K-smectites: understanding the role of potassium as a clay swelling inhibitor [J]. J. Am. Chem. Soc., 1995, 117: 12608
17 Chang F R C, Skipper N T, Sposito G. Computer simulation of interlayer molecular structure in sodium montmorillonite hydrates [J]. Langmuir, 1995, 11: 2734
18 Voora V K, Al-Saidi W A, Jordan K D. Density functional theory study of pyrophyllite and M-montmorillonites (M=Li, Na, K, Mg, and Ca): role of dispersion interactions [J]. J. Phys. Chem., 2011, 115A: 9695
19 Yang Z Y, Liu W L, Zhao R, et al. DFT study on the inhibition of hydration expansion of montmorillonite by 2-hydroxyethyl trimethyl ammonium chloride [J]. J. China Coal Soc., 2018, 43: 245
19 杨宗义, 刘文礼, 赵娆等. 2-羟乙基三甲基氯化铵抑制蒙脱石水化膨胀的密度泛函计算 [J]. 煤炭学报, 2018, 43: 245
20 Yang Z Y. Quantum chemical study on inhibiting the expansion and dissolution of montmorillonite in slime water system [D]. Beijing: China University of Mining and Technology, 2018
20 杨宗义. 煤泥水体系中抑制蒙脱石膨胀分散的量子化学研究 [D]. 北京: 中国矿业大学, 2018
21 Fan X L, Liu Y, Du X J, et al. Dissociative adsorption of methanethiol on Cu(111) surface: a density functional theory study [J]. Acta Phys. Chim. Sin., 2013, 29: 263
21 范晓丽, 刘燕, 杜秀娟等. 甲硫醇在Cu(111)表面的解离吸附: 密度泛函理论研究 [J]. 物理化学学报, 2013, 29: 263
22 Henao L, Mazeau K. The molecular basis of the adsorption of bacterial exopolysaccharides on montmorillonite mineral surface [J]. Mol. Simulat., 2008, 34: 1185
23 Wang Q G, Yang Z X, Wei S Y. DFT+U study on the interaction of water molecule and Ceria (111) surface [J]. Acta Phys. Chim. Sin., 2009, 25: 2513
23 王清高, 杨宗献, 危书义. 水分子和二氧化铈(111)表面相互作用的DFT+U研究 [J]. 物理化学学报, 2009, 25: 2513
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 蒋梦蕾, 代斌斌, 陈亮, 刘慧, 闵师领, 杨帆, 侯娟. 选区激光熔化成形尺寸对304L不锈钢点蚀性能的影响[J]. 材料研究学报, 2023, 37(5): 353-361.
[8] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.