|
|
定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能 |
郭俊杰1, 王国田2( ), 孟凡英1 |
1.张家口职业技术学院 张家口 075000 2.黑龙江工程学院 哈尔滨 150050 |
|
Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification |
GUO Junjie1, WANG Guotian2( ), MENG Fanying1 |
1.Zhangjiakou Vocational and Technical College, Zhangjiakou 075000, China 2.Heilongjiang Institute of Technology, Harbin 150050, China |
引用本文:
郭俊杰, 王国田, 孟凡英. 定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能[J]. 材料研究学报, 2020, 34(7): 554-560.
Junjie GUO,
Guotian WANG,
Fanying MENG.
Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification[J]. Chinese Journal of Materials Research, 2020, 34(7): 554-560.
[1] |
Wang Q, Zeng L C, Ding H S, et al. Microstructures and mechanical properties of directionally solidified C-containing γ-TiAl alloys via electromagnetic cold crucible [J]. Intermetallics, 2019, 113: 106587.
|
[2] |
Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titaniumaluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
|
[3] |
Wang X Y, Yang J R, Song L, et al. Evolution of B2 (ω) region in high-Nb containing TiAl alloy in intermediate temperature range [J]. Intermetallics, 2017, 82: 32
doi: 10.1016/j.intermet.2016.11.007
|
[4] |
Wen D S, Zong Y Y, Xu W C, et al. The effect of hydrogen on phase transformation and mechanical properties of a β containing γ-TiAl based alloy [J]. Int. J. Hydrog. Energy, 2014, 39: 17404
doi: 10.1016/j.ijhydene.2014.08.051
|
[5] |
Erdely P, Werner R, Schwaighofer E, et al. In-situ study of the time-temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy [J]. Intermetallics, 2015, 57: 17
doi: 10.1016/j.intermet.2014.09.011
|
[6] |
Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M] . Beijing: National Defense Industry Press, 2000: 705
|
[6] |
(张永刚, 韩雅芳, 陈国良等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2000: 705)
|
[7] |
Rester M, Fischer FD, Kirchlechner C, et al. Deformation mechanisms in micron-sized PST TiAl compression samples: experiment and model [J]. Acta Mater., 2011, 59: 3410
doi: 10.1016/j.actamat.2011.02.016
|
[8] |
Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides [J]. Mater. Sci. Eng., 1998, 22R: 187
|
[9] |
Liu Q, Nash P. The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys [J]. Intermetallics, 2011, 19: 1282
doi: 10.1016/j.intermet.2011.04.005
|
[10] |
Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy [J]. Mater. Sci. Eng., 2013, 571A: 199
|
[11] |
Guo F A, Ji V, Francois M, et al. Effect of internal stresses on the fracture toughness of a TiAl-based alloy with duplex microstructures [J]. Acta Mater., 2003, 51: 5349
doi: 10.1016/S1359-6454(03)00392-6
|
[12] |
Nam C Y, Wee D M, Wang P, et al. Microstructure and toughness of nitrogen-doped TiAl alloys [J]. Intermetallics, 2002, 10: 113
doi: 10.1016/S0966-9795(01)00116-9
|
[13] |
Lapin J, Gabalcová Z, Solidification behaviour of TiAl-based alloys studied by directional solidification technique [J]. Intermetallics, 2011, 19: 797
doi: 10.1016/j.intermet.2010.11.021
|
[14] |
Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Tailored microstructure creation of TiAl-based refractory alloys within VGF solidification [J]. Mater. Chem. Phys., 2013, 141: 643
doi: 10.1016/j.matchemphys.2013.05.037
|
[15] |
Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Microstructure engineering of TiAl-based refractory intermetallics within power-down directional solidification process [J]. J. Alloys Compd., 2014, 586(Suppl.1): S180
doi: 10.1016/j.jallcom.2012.10.175
|
[16] |
Ding H S, Nie G, Chen R R, et al. Directional solidification of TiAl-W-Si alloy by electromagnetic confinement of melt in cold crucible [J]. Intermetallics, 2012, 31: 264
doi: 10.1016/j.intermet.2012.07.018
|
[17] |
Duan Q Q, Luan Q D, Liu J, et al. Microstructure and mechanical properties of directionally solidified high-Nb containing Ti-Al alloys [J]. Mater. Des., 2010, 31: 3499
doi: 10.1016/j.matdes.2010.02.022
|
[18] |
Kishida K, Johnson D R, Masuda Y, et al. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys [J]. Intermetallics, 1998, 6: 679
doi: 10.1016/S0966-9795(98)00055-7
|
[19] |
Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temperat., 2016, 33: 549
|
[20] |
Kartavykh A V, Asnis E A, Piskun N V, et al. Microstructure and mechanical properties control of γ-TiAl(Nb, Cr, Zr) intermetallic alloy by induction float zone processing [J]. J. Alloys Compd., 2015, 643(Suppl.1): S182
doi: 10.1016/j.jallcom.2014.12.210
|
[21] |
Ding H S, Wang Y Z, Chen R R, et al. Effect of growth rate on microstructure and tensile properties of Ti-45Al-2Cr-2Nb prepared by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2015, 86: 670
doi: 10.1016/j.matdes.2015.07.122
|
[22] |
Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl [J]. Acta Metall. Mater., 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
|
[23] |
Liu C, Su Y Q, Li X Z, et al. Microstructure evolution of Ti-(44-50)Al alloys during directional peritectic solidification [J]. Acta Metall. Sin., 2005, 41: 260
|
[23] |
(刘畅, 苏彦庆, 李新中等. Ti-(44-50)Al合金定向包晶凝固过程中的组织演化 [J]. 金属学报, 2005, 41: 260)
|
[24] |
Yokoshima S, Yamaguchi M. Fracture behavior and toughness of PST crystals of TiAl [J]. Acta Mater., 1996, 44: 873
doi: 10.1016/1359-6454(95)00255-3
|
[25] |
Parthasarathy T A, Mendiratta M G, Dimiduk D M. Flow behavior of PST and fully lamellar polycrystals of Ti-48Al in the microstrain regime [J]. Acta Metall., 1998, 46: 4005
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|