Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (7): 554-560    DOI: 10.11901/1005.3093.2020.028
  研究论文 本期目录 | 过刊浏览 |
定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能
郭俊杰1, 王国田2(), 孟凡英1
1.张家口职业技术学院 张家口 075000
2.黑龙江工程学院 哈尔滨 150050
Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification
GUO Junjie1, WANG Guotian2(), MENG Fanying1
1.Zhangjiakou Vocational and Technical College, Zhangjiakou 075000, China
2.Heilongjiang Institute of Technology, Harbin 150050, China
引用本文:

郭俊杰, 王国田, 孟凡英. 定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和性能[J]. 材料研究学报, 2020, 34(7): 554-560.
Junjie GUO, Guotian WANG, Fanying MENG. Microstructure and Properties of Ti-(43-48)Al-2Cr-2Nb Alloy Prepared by Directional Solidification[J]. Chinese Journal of Materials Research, 2020, 34(7): 554-560.

全文: PDF(8284 KB)   HTML
摘要: 

研究了Al含量对冷坩埚定向凝固Ti-(43-48)Al-2Cr-2Nb合金的显微组织和力学性能的影响。结果表明,Ti-(43-48)Al-2Cr-2Nb合金的定向凝固组织主要由α2相和γ相组成,随着Al含量的提高α2相逐渐减少而γ相含量提高,且其显微组织片层由以平行片层和45°片层为主的混合片层向垂直混合片层转变;Al含量(48%,原子分数)较高的Ti-(43-48)Al-2Cr-2Nb合金其片层取向与应力方向垂直,具有较高的抗压强度和较低的塑性;Al含量(45%,原子分数)适中的合金其片层取向与应力方向平行,具有较高的强度、室温延伸率和综合性能。

关键词 金属材料TiAl合金定向凝固显微组织片层方向力学性能    
Abstract

The effect of Al content on the microstructure and mechanical properties of directionally solidified Ti-(43-48)Al-2Cr-2Nb alloy prepared by cold crucible was investigated. The results show that the directional solidification structure is mainly composed of α2-phase and γ-phase. With the increase of Al content, the α2-phase decreases and the γ-phase content increases, while the direction of microstructural lamellae changed from parallel lamellae and 45° lamellae to vertical lamellae; For the alloy with 48%Al (atomic fraction), the orientation of lamellae is perpendicular to the direction of stress, its compressive strength is high, but plasticity is low; For the alloy with 45%Al (atomic fraction), the orientation of lamellae is parallel to the direction of stress, while maintaining high strength, the room temperature elongation is also high, in other word, the comprehensive properties are good.

Key wordsmetallic materials    TiAl alloy    directional solidification    microstructure    lamellar direction    mechanical property
收稿日期: 2020-01-18     
ZTFLH:  TG244.3  
基金资助:国家自然科学基金(51471062);黑龙江工程学院博士基金(2019BJ03)
作者简介: 郭俊杰,女,1981年生,硕士
图1  电磁冷坩埚定向凝固的原理图[22]
图2  二元TiAl合金相图的高温部分
图3  定向凝固Ti-(43-48)Al-2Cr-2Nb合金的X射线衍射谱
图4  抽拉速度为0.6 mm/min的Ti-(43-48)Al-2Cr-2Nb合金定向凝固区的宏观形貌
图5  抽拉速度为0.6 mm/min的Ti-(43-48)Al-2Cr-2Nb合金定向凝固纵剖面的显微组织
图6  Ti-48Al-2Cr-2Nb 合金的界面响应函数示意图
图7  Al含量对抽拉速度为0.6 mm/min的合金片层取向的影响
图8  定向凝固TiAl合金的背散射电子图像
图9  定向凝固Ti-(43-48)Al-2Cr-2Nb合金的压缩试样片层与加载方向的关系示意图
图10  不同Al含量定向凝固Ti-(43-48)Al-2Cr-2Nb合金的压缩应力-应变曲线
Samples

Growth rate

/mm·min-1

Yield strength

σ0.2/MPa

Ultimate compressed

strength/MPa

Deformation

ε/%

1-430.6768214523.63
2-450.6709207231.48
3-480.6528182129.04
表1  抽拉速度为0.6 mm/min的定向凝固Ti-(43-48)Al-2Cr-2Nb合金的压缩性能
图11  Al含量对Ti-(43-48)Al-2Cr-2Nb合金压缩性能的影响
图12  抽拉速度为0.6 mm/min的定向凝固Ti-45Al-2Cr-2Nb合金的压缩试样断口形貌
[1] Wang Q, Zeng L C, Ding H S, et al. Microstructures and mechanical properties of directionally solidified C-containing γ-TiAl alloys via electromagnetic cold crucible [J]. Intermetallics, 2019, 113: 106587.
[2] Appel F, Clemens H, Fischer F D. Modeling concepts for intermetallic titaniumaluminides [J]. Prog. Mater. Sci., 2016, 81: 55
doi: 10.1016/j.pmatsci.2016.01.001
[3] Wang X Y, Yang J R, Song L, et al. Evolution of B2 (ω) region in high-Nb containing TiAl alloy in intermediate temperature range [J]. Intermetallics, 2017, 82: 32
doi: 10.1016/j.intermet.2016.11.007
[4] Wen D S, Zong Y Y, Xu W C, et al. The effect of hydrogen on phase transformation and mechanical properties of a β containing γ-TiAl based alloy [J]. Int. J. Hydrog. Energy, 2014, 39: 17404
doi: 10.1016/j.ijhydene.2014.08.051
[5] Erdely P, Werner R, Schwaighofer E, et al. In-situ study of the time-temperature-transformation behaviour of a multi-phase intermetallic β-stabilised TiAl alloy [J]. Intermetallics, 2015, 57: 17
doi: 10.1016/j.intermet.2014.09.011
[6] Zhang Y G, Han Y F, Chen G L, et al. Structural Intermetallics [M] . Beijing: National Defense Industry Press, 2000: 705
[6] (张永刚, 韩雅芳, 陈国良等. 金属间化合物结构材料 [M]. 北京: 国防工业出版社, 2000: 705)
[7] Rester M, Fischer FD, Kirchlechner C, et al. Deformation mechanisms in micron-sized PST TiAl compression samples: experiment and model [J]. Acta Mater., 2011, 59: 3410
doi: 10.1016/j.actamat.2011.02.016
[8] Appel F, Wagner R. Microstructure and deformation of two-phase γ-titanium aluminides [J]. Mater. Sci. Eng., 1998, 22R: 187
[9] Liu Q, Nash P. The effect of Ruthenium addition on the microstructure and mechanical properties of TiAl alloys [J]. Intermetallics, 2011, 19: 1282
doi: 10.1016/j.intermet.2011.04.005
[10] Xu W C, Shan D B, Zhang H, et al. Effects of extrusion deformation on microstructure, mechanical properties and hot workability of β containing TiAl alloy [J]. Mater. Sci. Eng., 2013, 571A: 199
[11] Guo F A, Ji V, Francois M, et al. Effect of internal stresses on the fracture toughness of a TiAl-based alloy with duplex microstructures [J]. Acta Mater., 2003, 51: 5349
doi: 10.1016/S1359-6454(03)00392-6
[12] Nam C Y, Wee D M, Wang P, et al. Microstructure and toughness of nitrogen-doped TiAl alloys [J]. Intermetallics, 2002, 10: 113
doi: 10.1016/S0966-9795(01)00116-9
[13] Lapin J, Gabalcová Z, Solidification behaviour of TiAl-based alloys studied by directional solidification technique [J]. Intermetallics, 2011, 19: 797
doi: 10.1016/j.intermet.2010.11.021
[14] Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Tailored microstructure creation of TiAl-based refractory alloys within VGF solidification [J]. Mater. Chem. Phys., 2013, 141: 643
doi: 10.1016/j.matchemphys.2013.05.037
[15] Kartavykh A V, Tcherdyntsev V V, Gorshenkov M V, et al. Microstructure engineering of TiAl-based refractory intermetallics within power-down directional solidification process [J]. J. Alloys Compd., 2014, 586(Suppl.1): S180
doi: 10.1016/j.jallcom.2012.10.175
[16] Ding H S, Nie G, Chen R R, et al. Directional solidification of TiAl-W-Si alloy by electromagnetic confinement of melt in cold crucible [J]. Intermetallics, 2012, 31: 264
doi: 10.1016/j.intermet.2012.07.018
[17] Duan Q Q, Luan Q D, Liu J, et al. Microstructure and mechanical properties of directionally solidified high-Nb containing Ti-Al alloys [J]. Mater. Des., 2010, 31: 3499
doi: 10.1016/j.matdes.2010.02.022
[18] Kishida K, Johnson D R, Masuda Y, et al. Deformation and fracture of PST crystals and directionally solidified ingots of TiAl-based alloys [J]. Intermetallics, 1998, 6: 679
doi: 10.1016/S0966-9795(98)00055-7
[19] Bewlay B P, Nag S, Suzuki A, et al. TiAl alloys in commercial aircraft engines [J]. Mater. High Temperat., 2016, 33: 549
[20] Kartavykh A V, Asnis E A, Piskun N V, et al. Microstructure and mechanical properties control of γ-TiAl(Nb, Cr, Zr) intermetallic alloy by induction float zone processing [J]. J. Alloys Compd., 2015, 643(Suppl.1): S182
doi: 10.1016/j.jallcom.2014.12.210
[21] Ding H S, Wang Y Z, Chen R R, et al. Effect of growth rate on microstructure and tensile properties of Ti-45Al-2Cr-2Nb prepared by electromagnetic cold crucible directional solidification [J]. Mater. Des., 2015, 86: 670
doi: 10.1016/j.matdes.2015.07.122
[22] Inui H, Oh M H, Nakamura A, et al. Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl [J]. Acta Metall. Mater., 1992, 40: 3095
doi: 10.1016/0956-7151(92)90472-Q
[23] Liu C, Su Y Q, Li X Z, et al. Microstructure evolution of Ti-(44-50)Al alloys during directional peritectic solidification [J]. Acta Metall. Sin., 2005, 41: 260
[23] (刘畅, 苏彦庆, 李新中等. Ti-(44-50)Al合金定向包晶凝固过程中的组织演化 [J]. 金属学报, 2005, 41: 260)
[24] Yokoshima S, Yamaguchi M. Fracture behavior and toughness of PST crystals of TiAl [J]. Acta Mater., 1996, 44: 873
doi: 10.1016/1359-6454(95)00255-3
[25] Parthasarathy T A, Mendiratta M G, Dimiduk D M. Flow behavior of PST and fully lamellar polycrystals of Ti-48Al in the microstrain regime [J]. Acta Metall., 1998, 46: 4005
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.