Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 591-598    DOI: 10.11901/1005.3093.2019.604
  研究论文 本期目录 | 过刊浏览 |
一步水热法制备纳米SnO2@C复合材料及其储锂性能研究
李玲芳1, 曾斌1, 原志朋2, 范长岭2()
1 湖南文理学院机械工程学院 常德 415000
2 湖南大学材料科学与工程学院 长沙 410082
One Step Hydrothermal Preparation of SnO2@C Composite and Its Lithium Storage Performance
LI Lingfang1, ZENG Bin1, YUAN Zhipeng2, FAN Changling2()
1 College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China
引用本文:

李玲芳, 曾斌, 原志朋, 范长岭. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究[J]. 材料研究学报, 2020, 34(8): 591-598.
Lingfang LI, Bin ZENG, Zhipeng YUAN, Changling FAN. One Step Hydrothermal Preparation of SnO2@C Composite and Its Lithium Storage Performance[J]. Chinese Journal of Materials Research, 2020, 34(8): 591-598.

全文: PDF(7663 KB)   HTML
摘要: 

以两种糖类化合物(葡萄糖与水溶性淀粉)为碳源,以SnCl4.5H2O为锡源用一步水热法制备了SnO2@C复合物。使用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、N2吸脱附法和透射电镜(TEM)表征其组成和微观结构,并采用恒电流充放电测试、循环伏安法(CV)和电化学阻抗谱(EIS)表征其作为锂离子电池负极材料的电化学性能。结果表明,糖类前驱体衍生的热解炭和直径为4~5 nm的SnO2纳米点生成了稳定的复合结构,炭基体的缓冲作用和材料纳米化缓解了SnO2的体积膨胀效应,使材料的结构稳定性和电化学性能提高。由于葡萄糖热解炭的有序度比淀粉热解炭更高,这组试样具有更好的循环性能和倍率性能,在2 A/g大电流密度下其比容量高于400 mAh/g。

关键词 复合材料SnO2热解硬炭纳米颗粒锂离子电池负极材料    
Abstract

Two kinds of SnO2@C composite were successfully prepared by a facile and cost-effective method through one-pot hydrothermal treatment of a mixture of Sn4+, and different carbohydrates (glucose and starch). The composition and microstructure of resultants were characterized by X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), N2 Adsorption-desorption method and Transmission Electron Microscope (TEM). The electrochemical performance as anode material for lithium-ion batteries was confirmed by galvanostatic charge-discharge test and Cyclic Voltammetry (CV) method. Results show that the pyrolytic carbon derived from carbohydrate precursors forms a stable composite structure with 4~5 nm SnO2 nanocrystals. The large volume variation of SnO2 during the Li+ insertion-extraction process is effectively alleviated by the buffering effect of carbon matrix. Whatsmore, small SnO2 nanoparticles can also effectively reduce this volume change, improving the electrode structural stability and electrochemical properties. Because the degree of order of glucose pyrolytic carbon is higher than that of starch pyrolytic carbon, correspondingly its composite shows better cycle and rate performance, which can stably release >400 mAh/g specific capacity at high current density of 2 A/g.

Key wordscomposite    tin dioxide    pyrolytic hard carbon    nanoparticles    anode of lithium ion batteries
收稿日期: 2019-12-30     
ZTFLH:  TM912.9  
基金资助:国家自然科学基金(51802096);国家自然科学基金(51672079);国家自然科学基金(51972104);湖南省自然科学基金(2020JJ4449)
作者简介: 李玲芳,女,1981年生,博士,副教授
图1  近年来SnO2基锂离子电池阳极材料的循环次数和容量报道[20]
图2  TOC-G和TOC-S的XRD图谱
图3  试样的红外光谱(a)、N2吸脱附曲线和孔径分布(b)
图4  TOC-G(a)和TOC-S(b)的TEM和HRTEM照片
图5  试样的循环性能(a)和倍率性能(b)
图6  TOC-G 和TOC-S 的充放电曲线以及锂离子在炭基体中的插层和吸附示意图
图7  TOC-G试样(a)和TOC-S试样(b)的循环伏安曲线(前三次循环和第100次循环)
[1] Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of mop nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
[1] (肖雅丹, 靳晓哲, 黄昊等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65)
doi: 10.11901/1005.3093.2017.793
[2] Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material [J]. Science, 1997, 276: 1395
doi: 10.1126/science.276.5317.1395
[3] Wang C, Zhou Y, Ge M Y, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity [J]. J. Am. Chem. Soc., 2010, 132: 46
doi: 10.1021/ja909321d pmid: 20000321
[4] Zhang L, Zhang G Q, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
pmid: 23553828
[5] Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode [J]. Science, 2010, 330: 1515
doi: 10.1126/science.1195628 pmid: 21148385
[6] Wang W C, Li P H, Fu Y B, et al. The preparation of double-void-space SnO2/carbon composite as high-capacity anode materials for lithium-ion batteries [J]. J. Power Sources, 2013, 238: 464
[7] Zhao Y, Wei C, Sun S N, Wang L P, et al. Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage [J]. Adv. Sci., 2015, 2: 1500097
[8] Ju H S, Hong Y J, Cho J S, et al. Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries [J]. Carbon, 2016, 100: 137
[9] Zhang X Q, Huang X X, Geng X, et al. Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries [J]. J. Electroanal. Chem., 2017, 794: 15
[10] Lu J, Peng Q, Li Y D. Synthesis of iron oxide-tin oxide-carbon composite nanobelts and their applications in lithium-ion batteries [J]. Chin. Sci. Bull., 2013, 58: 3213
[10] (陆君, 彭卿, 李亚栋. 氧化铁-氧化锡-碳复合纳米带的合成及其在锂电池中的应用 [J]. 科学通报, 2013, 58: 3213)
[11] Yang Z X, Du G D, Guo Z P, et al. Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties [J]. J. Mater. Res., 2010, 25: 1516
[12] Lin Y S, Duh J G, Hung M H. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery [J]. J. Phys. Chem., 2010, 114C: 13136
[13] Li H, Zhang B, Ou X, et al. Cover feature: core-shell structure of SnO2@c/PEDOT: PSS microspheres with dual protection layers for enhanced lithium storage performance (ChemElectroChem 8/2019) [J]. ChemElectroChem, 2019, 6: 2121
doi: 10.1002/celc.v6.8
[14] Wang H K, Wang J K, Cao D X, et al. Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance [J]. J. Mater. Chem., 2017, 5A: 6817
[15] Li S, Yang Z X, Guo T L, et al. Composite Nano-materials with 1-D core/shell architecture synthesized in one-pot hydrothemal method and its Li-storage properties [J]. Chin. J. Vac. Sci. Technnol., 2013, 33: 1260
[15] (李松, 杨尊先, 郭太良等. 一步水热法合成CNTs/SnO2@C一维壳核结构复合纳米材料及其锂存储特性研究 [J]. 真空科学与技术学报, 2013, 33: 1260)
[16] Wu P, Zhang D H, Yu J, et al. CNTs@SnO2@C coaxial nanocables with highly reversible lithium storage [J]. J. Phys. Chem., 2010, 114C: 22535
[17] Yu Z J, Wang Y L, Deng H G, et al. Synthesis and electrochemical performance of SnO2/Graphene anode material for lithium ion batteries [J]. J. Inorg. Mater., 2013, 28: 515
[17] (虞祯君, 王艳莉, 邓洪贵等. SnO2/石墨烯锂离子电池负极材料的制备及其电化学行为研究 [J]. 无机材料学报, 2013, 28: 515)
[18] Wang X Y, Zhou X F, Yao K, et al. A SnO2/graphene composite as a high stability electrode for lithium ion batteries [J]. Carbon, 2011, 49: 133
doi: 10.1016/j.carbon.2010.08.052
[19] Dahn J R, Xing W, Gao Y. The “falling cards model” for the structure of microporous carbons [J]. Carbon, 1997, 35: 825
[20] Zhao S Q, Sewell C D, Liu R P, et al. SnO2 as advanced anode of alkali-ion batteries: inhibiting sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility [J]. Adv. Energy Mater. 2020, 10: 1902657-98
[21] Dirican M, Lu Y, Ge Y Q, et al. Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material [J]. ACS Appl. Mater. Interfaces, 2015, 7: 18387
doi: 10.1021/acsami.5b04338 pmid: 26252051
[22] Béguin F, Chevallier F, Vix C, et al. A better understanding of the irreversible lithium insertion mechanisms in disordered carbons [J]. J. Phys. Chem. Solids, 2004, 65: 211
[23] Wang L Y, Leconte Y, Feng Z X, et al. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties [J]. Adv. Mater., 2017, 29: 1603286
[24] Zhang Z Y, Wang L, Xiao J, et al. One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties [J]. ACS Appl. Mater. Interfaces, 2015, 7: 17963
[25] Xu C H, Sun J, Gao L. Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties [J]. Nanoscale, 2012, 4: 5425
doi: 10.1039/c2nr31357j pmid: 22832436
[26] Wang L, Wang D, Dong Z H, et al. Interface chemistry engineering for stable cycling of reduced go/SnO2 nanocomposites for lithium ion battery [J]. Nano Lett., 2013, 13: 1711
doi: 10.1021/nl400269d pmid: 23477450
[27] Vinayan B P, Ramaprabhu S. Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications [J]. J. Mater. Chem., 2013, 1A: 3865
[28] Li L F, Fan C L, Zeng B, et al. Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose [J]. Mater. Chem. Phys., 2020, 242: 122380
[29] Lou X W, Deng D, Lee J Y, et al. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties [J]. Chem. Mater., 2008, 20: 6562
[30] Wang H Q, Zhang X H, Wen J B, et al. Preparation of spherical Sn/SnO2/porous carbon composite materials as anode material for lithium-ion batteries [J]. J Mater. Eng. Perform., 2015, 24: 1856
[31] Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteriess [J]. J. Electrochem. Soc., 2000, 147: 1271
[32] Wang X, Cao X Q, Bourgeois L, et al. N-doped graphene-SnO2 sandwich paper for high‐performance lithium-ion batteries [J]. Adv. Funct. Mater., 2012, 22: 2682
[33] Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Lett., 2009, 9: 72
pmid: 19090687
[34] Zhang H X, Feng C, Zhai Y C, et al. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries [J]. Adv. Mater., 2009, 21: 2299
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.