|
|
一步水热法制备纳米SnO2@C复合材料及其储锂性能研究 |
李玲芳1, 曾斌1, 原志朋2, 范长岭2( ) |
1 湖南文理学院机械工程学院 常德 415000 2 湖南大学材料科学与工程学院 长沙 410082 |
|
One Step Hydrothermal Preparation of SnO2@C Composite and Its Lithium Storage Performance |
LI Lingfang1, ZENG Bin1, YUAN Zhipeng2, FAN Changling2( ) |
1 College of Mechanical Engineering, Hunan University of Arts and Science, Changde 415000, China 2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China |
引用本文:
李玲芳, 曾斌, 原志朋, 范长岭. 一步水热法制备纳米SnO2@C复合材料及其储锂性能研究[J]. 材料研究学报, 2020, 34(8): 591-598.
Lingfang LI,
Bin ZENG,
Zhipeng YUAN,
Changling FAN.
One Step Hydrothermal Preparation of SnO2@C Composite and Its Lithium Storage Performance[J]. Chinese Journal of Materials Research, 2020, 34(8): 591-598.
[1] |
Xiao Y D, Jin X Z, Huang H, et al. Preparation and electrochemical behavior of mop nanoparticles as anode material for lithium-ion batteries [J]. Chin. J. Mater. Res., 2019, 33: 65
|
[1] |
(肖雅丹, 靳晓哲, 黄昊等. MoP纳米粒子锂离子电池负极材料的制备及其电化学性能 [J]. 材料研究学报, 2019, 33: 65)
doi: 10.11901/1005.3093.2017.793
|
[2] |
Idota Y, Kubota T, Matsufuji A, et al. Tin-based amorphous oxide: a high-capacity lithium-ion-storage material [J]. Science, 1997, 276: 1395
doi: 10.1126/science.276.5317.1395
|
[3] |
Wang C, Zhou Y, Ge M Y, et al. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity [J]. J. Am. Chem. Soc., 2010, 132: 46
doi: 10.1021/ja909321d
pmid: 20000321
|
[4] |
Zhang L, Zhang G Q, Wu H B, et al. Hierarchical tubular structures constructed by carbon-coated SnO2 nanoplates for highly reversible lithium storage [J]. Adv. Mater., 2013, 25: 2589
pmid: 23553828
|
[5] |
Huang J Y, Zhong L, Wang C M, et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode [J]. Science, 2010, 330: 1515
doi: 10.1126/science.1195628
pmid: 21148385
|
[6] |
Wang W C, Li P H, Fu Y B, et al. The preparation of double-void-space SnO2/carbon composite as high-capacity anode materials for lithium-ion batteries [J]. J. Power Sources, 2013, 238: 464
|
[7] |
Zhao Y, Wei C, Sun S N, Wang L P, et al. Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage [J]. Adv. Sci., 2015, 2: 1500097
|
[8] |
Ju H S, Hong Y J, Cho J S, et al. Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries [J]. Carbon, 2016, 100: 137
|
[9] |
Zhang X Q, Huang X X, Geng X, et al. Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries [J]. J. Electroanal. Chem., 2017, 794: 15
|
[10] |
Lu J, Peng Q, Li Y D. Synthesis of iron oxide-tin oxide-carbon composite nanobelts and their applications in lithium-ion batteries [J]. Chin. Sci. Bull., 2013, 58: 3213
|
[10] |
(陆君, 彭卿, 李亚栋. 氧化铁-氧化锡-碳复合纳米带的合成及其在锂电池中的应用 [J]. 科学通报, 2013, 58: 3213)
|
[11] |
Yang Z X, Du G D, Guo Z P, et al. Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties [J]. J. Mater. Res., 2010, 25: 1516
|
[12] |
Lin Y S, Duh J G, Hung M H. Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery [J]. J. Phys. Chem., 2010, 114C: 13136
|
[13] |
Li H, Zhang B, Ou X, et al. Cover feature: core-shell structure of SnO2@c/PEDOT: PSS microspheres with dual protection layers for enhanced lithium storage performance (ChemElectroChem 8/2019) [J]. ChemElectroChem, 2019, 6: 2121
doi: 10.1002/celc.v6.8
|
[14] |
Wang H K, Wang J K, Cao D X, et al. Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance [J]. J. Mater. Chem., 2017, 5A: 6817
|
[15] |
Li S, Yang Z X, Guo T L, et al. Composite Nano-materials with 1-D core/shell architecture synthesized in one-pot hydrothemal method and its Li-storage properties [J]. Chin. J. Vac. Sci. Technnol., 2013, 33: 1260
|
[15] |
(李松, 杨尊先, 郭太良等. 一步水热法合成CNTs/SnO2@C一维壳核结构复合纳米材料及其锂存储特性研究 [J]. 真空科学与技术学报, 2013, 33: 1260)
|
[16] |
Wu P, Zhang D H, Yu J, et al. CNTs@SnO2@C coaxial nanocables with highly reversible lithium storage [J]. J. Phys. Chem., 2010, 114C: 22535
|
[17] |
Yu Z J, Wang Y L, Deng H G, et al. Synthesis and electrochemical performance of SnO2/Graphene anode material for lithium ion batteries [J]. J. Inorg. Mater., 2013, 28: 515
|
[17] |
(虞祯君, 王艳莉, 邓洪贵等. SnO2/石墨烯锂离子电池负极材料的制备及其电化学行为研究 [J]. 无机材料学报, 2013, 28: 515)
|
[18] |
Wang X Y, Zhou X F, Yao K, et al. A SnO2/graphene composite as a high stability electrode for lithium ion batteries [J]. Carbon, 2011, 49: 133
doi: 10.1016/j.carbon.2010.08.052
|
[19] |
Dahn J R, Xing W, Gao Y. The “falling cards model” for the structure of microporous carbons [J]. Carbon, 1997, 35: 825
|
[20] |
Zhao S Q, Sewell C D, Liu R P, et al. SnO2 as advanced anode of alkali-ion batteries: inhibiting sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility [J]. Adv. Energy Mater. 2020, 10: 1902657-98
|
[21] |
Dirican M, Lu Y, Ge Y Q, et al. Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material [J]. ACS Appl. Mater. Interfaces, 2015, 7: 18387
doi: 10.1021/acsami.5b04338
pmid: 26252051
|
[22] |
Béguin F, Chevallier F, Vix C, et al. A better understanding of the irreversible lithium insertion mechanisms in disordered carbons [J]. J. Phys. Chem. Solids, 2004, 65: 211
|
[23] |
Wang L Y, Leconte Y, Feng Z X, et al. Novel preparation of N-doped SnO2 nanoparticles via laser-assisted pyrolysis: demonstration of exceptional lithium storage properties [J]. Adv. Mater., 2017, 29: 1603286
|
[24] |
Zhang Z Y, Wang L, Xiao J, et al. One-pot synthesis of three-dimensional graphene/carbon nanotube/SnO2 hybrid architectures with enhanced lithium storage properties [J]. ACS Appl. Mater. Interfaces, 2015, 7: 17963
|
[25] |
Xu C H, Sun J, Gao L. Controllable synthesis of monodisperse ultrathin SnO2 nanorods on nitrogen-doped graphene and its ultrahigh lithium storage properties [J]. Nanoscale, 2012, 4: 5425
doi: 10.1039/c2nr31357j
pmid: 22832436
|
[26] |
Wang L, Wang D, Dong Z H, et al. Interface chemistry engineering for stable cycling of reduced go/SnO2 nanocomposites for lithium ion battery [J]. Nano Lett., 2013, 13: 1711
doi: 10.1021/nl400269d
pmid: 23477450
|
[27] |
Vinayan B P, Ramaprabhu S. Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications [J]. J. Mater. Chem., 2013, 1A: 3865
|
[28] |
Li L F, Fan C L, Zeng B, et al. Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose [J]. Mater. Chem. Phys., 2020, 242: 122380
|
[29] |
Lou X W, Deng D, Lee J Y, et al. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties [J]. Chem. Mater., 2008, 20: 6562
|
[30] |
Wang H Q, Zhang X H, Wen J B, et al. Preparation of spherical Sn/SnO2/porous carbon composite materials as anode material for lithium-ion batteries [J]. J Mater. Eng. Perform., 2015, 24: 1856
|
[31] |
Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteriess [J]. J. Electrochem. Soc., 2000, 147: 1271
|
[32] |
Wang X, Cao X Q, Bourgeois L, et al. N-doped graphene-SnO2 sandwich paper for high‐performance lithium-ion batteries [J]. Adv. Funct. Mater., 2012, 22: 2682
|
[33] |
Paek S M, Yoo E J, Honma I. Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure [J]. Nano Lett., 2009, 9: 72
pmid: 19090687
|
[34] |
Zhang H X, Feng C, Zhai Y C, et al. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries [J]. Adv. Mater., 2009, 21: 2299
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|