Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (8): 584-590    DOI: 10.11901/1005.3093.2020.042
  研究论文 本期目录 | 过刊浏览 |
四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能
刘芝君, 李之锋(), 王春香, 谢光明, 黄庆研, 钟盛文
江西理工大学材料科学与工程学院 赣州 341000
Hydrothermal Synthesis and Electrochemical Performance of Co3O4@CNTs Composite Film
LIU Zhijun, LI Zhifeng(), WANG Chunxiang, XIE Guangming, HUANG Qingyan, ZHONG Shengwen
School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
引用本文:

刘芝君, 李之锋, 王春香, 谢光明, 黄庆研, 钟盛文. 四氧化三钴/碳纳米管薄膜的水热合成及其储锂性能[J]. 材料研究学报, 2020, 34(8): 584-590.
Zhijun LIU, Zhifeng LI, Chunxiang WANG, Guangming XIE, Qingyan HUANG, Shengwen ZHONG. Hydrothermal Synthesis and Electrochemical Performance of Co3O4@CNTs Composite Film[J]. Chinese Journal of Materials Research, 2020, 34(8): 584-590.

全文: PDF(3741 KB)   HTML
摘要: 

以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。

关键词 复合材料负极材料水热法Co3O4碳纳米管薄膜    
Abstract

A facile and effective method has been developed for synthesis of Co3O4/carbon nanotube film (Co3O4@CNTs) composites as anode materials in LIBs. With 5-sulfosalicylic acid and glutaric acid as chelation and oxidation reagents, the CoSO4 can be directly oxidized into nanoscale Co3O4 under hydrothermal conditions. Co3O4/carbon nanotube film (Co3O4@CNTs) composites can be easily synthesized and the Co3O4 particles are tightly attached to carbon nanotubes via the same process. The electrochemical test results show that the composites film has higher discharge specific capacity and excellent rate performance. At 0.2C rate the initial discharge specific capacity can be up to 1712.5 mAh·g-1, the discharge specific capacity is still about 1128.9 mAh·g-1 after 100 cycles. At 1C rate the discharge specific capacity of 527.8 mAh·g-1 is still maintained after 100 cycles. The excellent performance is due to the synergistic combination of Co3O4 and CNTs. The highly dispersed Co3O4 expands the contact area between the active material and the electrolyte, and CNTs can form the conductive network to increase the electron conductivity, thus improve the cycle performance of Co3O4 anode materials.

Key wordscomposite    anode material    hydrothermal    Co3O4    carbon nanotube film
收稿日期: 2020-02-12     
ZTFLH:  O614.8  
基金资助:国家自然科学基金(51874151);国家自然科学基金(51964017);江西省教育厅自然科学基金(GJJ160202);江西省教育厅自然科学基金(GJJ190428)
作者简介: 刘芝君,女,1993年生,硕士生
图1  Co3O4@CNTs复合材料制备流程的示意图
图2  Co3O4和Co3O4@CNTs的X射线衍射图谱
图3  Co3O4粉体和Co3O4@CNTs薄膜的扫描电镜照片
图4  Co3O4的X射线光电子能谱图
图5  Co3O4(a)和Co3O4@CNTs(b)薄膜电极的循环伏安曲线
图6  电流密度为50 mA·g-1条件下Co3O4和Co3O4@CNTs薄膜电极材料的充放电曲线
图7  Co3O4和Co3O4@CNTs薄膜电极不同倍率下的循环性能
图8  Co3O4和Co3O4@CNTs薄膜电极不同倍率下的循环性能
图9  Co3O4和Co3O4@CNTs 薄膜电极的Nyquist图
图10  Co3O4@CNTs薄膜电极循环100次和酸化处理CNTs薄膜的SEM图
[1] An F Q, Zhao H L, Cheng Z, et al. Development status and research progress of power battery for pure electric vehicles [J]. Chin. J. Eng., 2019, 41: 22
[1] (安富强, 赵洪量, 程志等. 纯电动车用锂离子电池发展现状与研究进展 [J]. 工程科学学报, 2019, 41: 22)
[2] Ai Q, Yang C X, Jiang G D, et al. A novel SnO2@BNNSs@C composite nano-structure and its electrochemical energy storage characteristics [J]. Mater. Eng., 2018, 46(11): 77
[2] (艾青, 杨灿星, 江国栋等. 一种新型SnO2@BNNSs@C纳米复合结构及其电化学储能特性 [J]. 材料工程, 2019, 46(11): 77)
[3] Zhu X Q, Wang Z P, Wang C, et al. An experimental study on overcharge behaviors of lithium-ion power battery with LiNi0.6Co0.2Mn0.2-O2 cathode [J]. Automot. Eng., 2019, 41(5): 582
[3] (朱晓庆, 王震坡, 王聪等. 三元锂离子动力电池过充行为特性实验研究 [J]. 汽车工程, 2019, 41(5): 582)
[4] Chou S L, Wang J Z, Liu H K, et al. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery [J]. J. Power Sour., 2008, 182: 359
[5] Jan S S. Nurgul S. Shi X Q,et al. Improvement of electrochemical performance of LiNi0.8Co0.1Mn0.1O2 cathode material by graphene nanosheets modification [J]. Electrochim. Acta, 2014, 149: 86
[6] He L, Xu J M, Wang Y J, et al. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13-O2 as cathode materials with high coulombic efficiency and improved cyclability for Li-ion batteries [J]. Acta Phys. Chim. Sin., 2017, 33: 1605
[6] (何磊, 徐俊敏, 王永建等. LiFePO4包覆的Li1.2Mn0.54Ni0.13Co0.13-O2锂离子电池正极材料: 增强的库伦效率和循环性能 [J]. 物理化学学报, 2017, 33: 1605)
[7] Qiu Q Q, Shadike Z, Wang Q C, et al. Improving the electrochemical performance and structural stability of the LiNi0.8Co0.15Al0.05O2 cathode material at high-voltage charging through Ti substitution [J]. ACS Appl. Mater. Interfaces, 2019, 26: 23213
[8] Wang L, Zhao D D, Liu X, et al. Hydrothermal for synthesis of CoO nanoparticles/graphene composite as li-ion battery anodes [J]. Acta Chim. Sin., 2017, 75: 231
[8] (王蕾, 赵冬冬, 刘旭等. 水热法合成氧化亚钴纳米粒子/石墨烯复合材料及其储锂性能研究 [J]. 化学学报, 2017, 75: 231)
[9] Donders M E, Knoops H C M, Kessels W M M, et al. Co3O4 as anode material for thin film micro-batteries prepared by remote plasma atomic layer deposition [J]. J. Power Sour., 2012, 203: 72
[10] Zhan L, Wang S Q, Ding L X, et al. Grass-like Co3O4 nanowire arrays anode with high rate capability and excellent cycling stability for lithium-ion batteries [J]. Electrochim. Acta, 2014, 135: 35
[11] Liang H M, Wang Z X, Guo H J, et al. Unique porous yolk-shell structured Co3O4 anode for high performance lithium ion batteries [J]. Ceram. Int., 2017, 43: 11058
[12] Huang G Y, Xu S M, Lu S S, et al. Porous polyhedral and fusiform Co3O4 anode materials for high-performance lithium-ion batteries [J]. Electrochim. Acta, 2014, 135: 420
[13] Li T, Li X H, Wang Z X, et al. Synthesis of nanoparticles-assembled Co3O4 microspheres as anodes for Li-ion batteries by spray pyrolysis of CoCl2 solution [J]. Electrochim. Acta, 2016, 209: 456
[14] Wang S F, Zhu Y P, Xu X M, et al. Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries [J]. Energy, 2017, 125: 569
[15] Guo D Y, Pan L, Hao J M, et al. Nanosheets-in-nanotube Co3O4-carbon array design enables stable Li-ion storage [J]. Carbon, 2019, 147: 501
[16] Chi X N, Chang L, Xie D, et al. Hydrothermal preparation of Co3O4/graphene composite as anode material for lithium-ion batteries [J]. Mater. Lett., 2013, 106: 178
[17] Jiang Y, Yan X M, Xiao W, et al. Co3O4-graphene nanoflowers as anode for advanced lithium ion batteries with enhanced rate capability [J]. J. Alloys Compd., 2017, 710: 114
doi: 10.1016/j.jallcom.2017.03.239
[18] Yoon T H, Park Y J. Electrochemical properties of CNTs/Co3O4 blended-anode for rechargeable lithium batteries [J]. Solid State Ion., 2012, 225: 498
[19] Li Y F, Fu Y Y, Liu W B, et al. Hollow Co-Co3O4@CNTs derived from ZIF-67 for lithium ion batteries [J]. J. Alloys Compd., 2019, 784: 439
[20] Foster J M, Huang X, Jiang M, et al. Causes of binder damage in porous battery electrodes and strategies to prevent it [J]. J. Power Sour., 2017, 350: 140
[21] Wu Z S, Ren W C, Wen L, et al. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano, 2010, 4: 3187
doi: 10.1021/nn100740x pmid: 20455594
[22] Jadhav H S, Rai A K, Lee J Y, et al. Enhanced electrochemical performance of flower-like Co3O4 as an anode material for high performance lithium-ion batteries [J]. Electrochim. Acta, 2014, 146: 270
[23] Sun L N, Deng Q W, Li Y L, et al. CoO-Co3O4 heterostructure nanoribbon/RGO sandwich-like composites as anode materials for high performance lithium-ion batteries [J]. Electrochim. Acta, 2017, 241: 252
doi: 10.1016/j.electacta.2017.04.148
[24] Chen F, Yuan Y F, Ye L W, et al. Co3O4 nanocrystalline-assembled mesoporous hollow polyhedron nanocage-in-nanocage as improved performance anode for lithium-ion batteries [J]. Mater. Lett., 2019, 237: 213
[25] Liu Y G, Wan H C, Jiang N, et al. Chemical reduction-induced oxygen deficiency in Co3O4 nanocubes as advanced anodes for lithium ion batteries [J]. Solid State Ion., 2019, 334: 117
[26] Chen W, Nie Y Y, Sun X G, et al. Performance of lithium-ion capacitors using pre-lithiated multi-walled carbon nanotube composite anode [J]. Chin. J. Mater. Res., 2019, 33: 371
[26] (陈炜, 聂艳艳, 孙晓刚等. 预嵌锂多壁碳纳米管的性能 [J]. 材料研究学报, 2019, 33: 371)
[27] Huang R, Li Y F, Song Y H, et al. Facial preparation of N-doped carbon foam supporting Co3O4 nanorod arrays as free-standing lithium-ion batteries’s anode [J]. J. Alloys Compd., 2019, 818: 152839
[28] Marzuki N S, Tai N U, Hassan M F, et al. Enhanced lithium storage in Co3O4/carbon anode for Li-ion batteries [J]. Electrochim. Acta, 2015, 182: 452
[29] Feng K, Park H W, Wang X L, et al. High performance porous anode based on template-free synthesis of Co3O4 nanowires for lithium-ion batteries [J]. Electrochim. Acta, 2014, 139: 145
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.