Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (6): 401-409    DOI: 10.11901/1005.3093.2019.541
  研究论文 本期目录 | 过刊浏览 |
Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程
王敬忠1,2(), 丁凯伦1, 杨西荣1,2, 刘晓燕1,2
1.西安建筑科技大学 冶金工程学院 西安 710055
2.西安建筑科技大学陕西冶金工程技术研究中心 西安 710055
Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation
WANG Jingzhong1,2(), DING Kailun1, YANG Xirong1,2, LIU Xiaoyan1,2
1.College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi’an 710055, China
2.Shaanxi Metallurgical Engineering Technology Research Center, Xi'an University of Architecture and Technology, Xi'an 710055,China
引用本文:

王敬忠, 丁凯伦, 杨西荣, 刘晓燕. Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程[J]. 材料研究学报, 2020, 34(6): 401-409.
Jingzhong WANG, Kailun DING, Xirong YANG, Xiaoyan LIU. Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation[J]. Chinese Journal of Materials Research, 2020, 34(6): 401-409.

全文: PDF(6562 KB)   HTML
摘要: 

使用Gleeble-3800 热模拟试验机研究了Ti-62A合金在变形温度为800~950℃、应变速率为0.001~10 s-1条件下的热压缩变形行为。结果表明,随着变形温度的提高出现Ti-62A合金的动态软化率降低的反常现象。(α+β)双相钛合金中Mo、Cr等β稳定元素的原子活性随着温度的升高而逐渐降低和β相比例增大,Jmatpro软件的热力学计算表明(α+β)双相钛合金的这一现象与此有密切关系。而α钛合金和β钛合金出现动态软化速率降低,与加工温度升高β相比例增大的关系更密切。从800℃升高到950℃,Ti-62A合金中β相的比例由32.1%提高到84.3%,Mo、Cr活性的降幅均达到64%。这些因素使变形过程中Ti-62A合金的晶界迁移速度和动态软化速率均随变形温度升高而降低,其950℃的真应力-应变曲线多为典型的动态回复型。α相的含量随着变形温度的提高而降低,且在较高的变形温度下β相的晶粒尺寸也较为粗大。构建的基于应变补偿的Ti-62A合金Arrhenius变形抗力模型,能较好地预测合金的流变应力行为,其相关系数R达到0.990,预测值与实测值的平均相对误差为8.983%。

关键词 金属材料Ti-62A合金热压缩合金元素活度计算微观组织应变补偿的本构方程    
Abstract

The hot compression deformation behavior of Ti-62A alloy was investigated via Gleeble-3800 thermal simulator by strain rate of 0.001~10 s-1 at 800~950℃. The results show that the dynamic softening rate of Ti-62A alloy decreased with the increase of deformation temperature. This phenomenon existed in the thermal processing of other biphasic titanium alloy, α-titanium alloy and β-titanium alloy. According to the thermodynamic calculation results by Jmatpro software, the phenomenon of (α+β) biphasic titanium alloy is closely related to the decrease of the atomic activity of the main alloy elements Mo, Cr and other β stable elements with the increase of temperature and the increase of β phase ratio. The reason for the decrease of dynamic softening rate of α-titanium alloy and β-titanium alloy is more closely related to the increase of the β phase ratio with the increase of processing temperature. When the temperature rose from 800℃ to 950℃, the proportion of β phase in Ti-62A alloy increased from 32.1% to 84.3%, and the activity of Mo and Cr decreased by 64%, which thereby results in the decrease of grain boundary migration rate and dynamic softening rate of Ti-62A alloy. The true stress-strain curve at 950℃ is mostly a typical dynamic recovery type. The content of α phase decreases with the increase of deformation temperature, and the β grain size is relatively large at higher deformation temperature. The Arrhenius deformation resistance model of Ti-62A alloy was constructed based on strain compensation, with which the rheological stress behavior of Ti-62A alloy can be predicted well, correspondingly, the correlation coefficient R is 0.990, and the average relative error between the predicted value and the measured value is 8.983%.

Key wordsmetallic materials    Ti-62A alloy    hot compression    activity calculation of alloying elements    microstructure    constitutive equation of strain compensation
收稿日期: 2019-11-18     
ZTFLH:  TG146.2+3  
基金资助:国家自然科学基金(51474170)
作者简介: 王敬忠,男,1974年生,副教授
AlCrMoZnZrSiFeCNHOTi
5.25~6.251.75~2.251.75~2.251.75~2.251.75~2.250.20~0.27≤0.15≤0.04≤0.03≤0.0125≤0.13Bal.
表1  Ti-62A钛合金的化学成分
图1  实验用Ti-62A合金的原始组织
图2  在不同变形条件下Ti-62A合金的流变应力曲线
图3  钛合金中合金元素的活性随温度的变化
图4  钛合金中α相和β相的比例随温度的变化
图5  在应变速率为 0. 001 s-1、不同温度条件下热压缩变形后Ti-62A 合金的显微组织
图6  在应变速率为1 s-1、不同温度条件下变形的Ti-62A合金的显微组织
αnQlnA
C0=0.00924D0=1.91645E0=398.95592F0=36.20351
C1=0.01367D1=3.79583E1=-271.00142F1=-21.10215
C2=-0.05939D2=-13.6498E2=137.81848F2=-11.71244
C3=0.14321D3=31.05524E3=584.16655F3=112.84221
C4=-0.1574D4=-35.64127E4=-1548.1067F4=-209.55112
C5=0.06308D5=15.75986E5=960.56284F5=116.99094
表2  Ti-62A合金常数拟合参数
图7  应变补偿的本构方程模拟流变应力曲线与实验流变应力曲线
图8  Ti-62A合金的应变补偿方程计算值与实测流变应力值的相关性
[1] Cao C X. Change of material selection criterion and development of high damage-tolerant titanium alloy [J]. Acta. Metall. Sin., 2002, 38(S1): 4
[1] (曹春晓. 选材判据的变化与高损伤容限钛合金的发展 [J]. 金属学报, 2002, 38(s1): 4)
[2] Fu Y Y, Song Y Q, Hui S X, et al. Research and Application of Typical Aerospace Titanium Alloys [J]. Chinese Journal of Rare Metals, 2006, 30(6): 850
[3] Li S K, Xiong B Q, Hui S X. Effects of cooling rate on the fracture properties of TA15 ELI alloy plates [J]. Rare Metals, 2007, 26(1): 33
doi: 10.1016/S1001-0521(07)60024-2
[4] Wood J R, Russo P A, Welter M F, et al. Thermomechanical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications [J]. Mater. Sci. Eng. A, 1998, 243(1-2): 109
doi: 10.1016/S0921-5093(97)00787-9
[5] Arrieta A J. Multidisciplinary Design Optimization of a Fighter Aircraft with Damage Tolerance Constraints and a Probabilistic Model of the Fatigue Environment [D]. America: University of Oklahoma Graduate College, 2001
[6] Yu Y, Hui S X, Ye W J, et al. Effect of heat treatment process on the mechanical properties of T-Al-Sn-Zr-Mo-Si-X series alloys [J]. Heat. Treat. Met, 2005, 30(12): 68
[6] (于洋, 惠松骁, 叶文君等. 热处理对Ti-Al-Sn-Zr-Mo-Si-X系合金性能的影响 [J]. 金属热处理, 2005, 30(12): 68)
[7] Yu Y, Hui S X, Ye W J, et al. Mechanical properties and microstucture of an α+β titanium alloy with high strength and fracture toughnes [J]. Rare Metals, 2009, 28(4): 346
doi: 10.1007/s12598-009-0068-5
[8] Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9): 1136
doi: 10.1016/0001-6160(66)90207-0
[9] Li F G, Wang X N, Yu X L. A New Optimization Method of Constitutive Equation for Hot Working Based on Physical Simulation and Numerical Simulation[C]// Materials Science Forum. Trans Tech Publications, 2008: 402
[10] He X, Yu Z, Liu G, et al. Mathematical modeling for high temperature flow behavior of as-cast Ti-45Al-8.5 Nb-(W, B, Y) alloy [J]. Mater. Des, 2009, 30(1): 166
doi: 10.1016/j.matdes.2008.04.046
[11] Yu X, Li F, Li M. Modeling and optimization of general constitutive equation of semi-solid thixoforming [J]. Chin. J. Mech. Eng, 2007, 43(10): 72
[12] Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Mater. Sci. Eng. A, 2009, 500(1-2): 114
doi: 10.1016/j.msea.2008.09.019
[13] Lin Y C, Chen M S, Zhong J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Comp. Mater. Sci, 2008, 42(3): 470
doi: 10.1016/j.commatsci.2007.08.011
[14] WU W X, Li J, Jie D, et al. Prediction of flow stress of Mg-Nd-Zn-Zr alloy during hot compression [J]. T. Nonferr. Metal. Soc, 2012, 22(5): 1169
doi: 10.1016/S1003-6326(11)61301-0
[15] Jiang X L. Investigation of microstructure evolution and thermal deformation behavior of TC11 titanium alloy [D]. Shenyang: Northeastern University, 2011
[15] (江想莲. TC11钛合金热变形行为及其组织演变规律的研究 [D]. 沈阳: 东北大学, 2011)
[16] Dai J. Hot Deformation Behavior and Processing Map of Titanium Alloy TC21 [D]. Nanchang: Nanchang Hangkong University, 2015
[16] (戴俊. TC21钛合金热态变形行为及加工图 [D]. 南昌: 南昌航空大学, 2015)
[17] Zhang H F. Studies on High Temperature Deformation Mechanics Behavior of Ti-6Al-2Sn Alloy [D]. Taiyuan: North University of China, 2009
[17] (张慧芳. Ti-6Al-2Sn钛合金高温变形力学行为研究 [D]. 太原:中北大学, 2009)
[18] Liu K, Huang H G, Qin T C, et al. High temperature compression deformation behavior and microstructure evolution of TC4 titanium alloy [J]. Special Casting & Nonferrous Alloys, 2019, (9): 936
[18] (刘昆, 黄海广, 秦铁昌等. TC4钛合金高温压缩变形行为与组织演变 [J]. 特种铸造及有色合金, 2019, (9): 936)
[19] Chai X Y, GAO Z Y, Pan T, et al. Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation [J]. Chinese Journal of Engineering, 2018, 40(2): 226
[19] (柴希阳, 高志玉, 潘涛等. 工业纯钛TA2热变形过程的流变行为本构方程 [J]. 工程科学学报, 2018, 40(2): 226)
[20] Ren W B, Li J, Yu H, et al. Hot Deformation Behaviors and Processing Map of TA17 Titanium Alloy [J]. Iron Steel Vanadium Titanium, 2017, 38(2): 46
[20] (任万波, 李军, 于辉等. TA17 钛合金热变形行为及加工图 [J]. 钢铁钒钛, 2017, 38(2): 46)
[21] Yang J, Wang Y Q, Li X M, et al. Study on hot deformation behavior and processing map of TA15 titanium alloy [J]. China Titanium Industry, 2015(2): 29
[21] (杨军, 王永强, 李献民等. TA15钛合金热变形行为及加工图研究 [J]. 中国钛业, 2015 (2): 29)
[22] Xiong Y S, Wang Q Q, Xiang W, et al. Hot deformation behavior of TA15 titanium alloy for aerospace [J]. Journal of Plasticity Engineering, 2017(3): 184
[22] (熊运森, 王茜茜, 向伟等. 航空用TA15钛合金热变形行为研究 [J]. 塑性工程学报, 2017(3): 184)
[23] Zhou S W. Study on hot deformation behavior and microstructure evolution simulation of TB17 titanium alloy [D]. Nanchang: Nanchang Hangkong University, 2018
[23] (周盛武. TB17钛合金热变形行为及显微组织演变模拟研究 [D]. 南昌: 南昌航空大学, 2018)
[24] He D. Study on Hot Deformation Behavior and Processing Map of a New β Titanium Alloy Based on Friction Correction [D]. Xi'an: Xi'an University of architecture and technology, 2016
[24] (何丹. 基于摩擦修正的新型β钛合金热变形行为与加工图研究 [D]. 西安:西安建筑科技大学, 2016)
[25] Pu E, Feng H, Liu M, et al. Constitutive modeling for flow behaviors of super-austenitic stainless steel S32654 during hot deformation [J]. J. Iron. Steel. Res. Int, 2016, 23(2): 178
doi: 10.1016/S1006-706X(16)30031-0
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.