材料研究学报, 2020, 34(6): 401-409 DOI: 10.11901/1005.3093.2019.541

研究论文

Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程

王敬忠,1,2, 丁凯伦1, 杨西荣1,2, 刘晓燕1,2

1.西安建筑科技大学 冶金工程学院 西安 710055

2.西安建筑科技大学陕西冶金工程技术研究中心 西安 710055

Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation

WANG Jingzhong,1,2, DING Kailun1, YANG Xirong1,2, LIU Xiaoyan1,2

1.College of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi’an 710055, China

2.Shaanxi Metallurgical Engineering Technology Research Center, Xi'an University of Architecture and Technology, Xi'an 710055,China

通讯作者: 王敬忠,wzjxjd2003@sina.com,研究方向为新型金属材料成分优化设计及其组织稳定性

责任编辑: 黄青

收稿日期: 2019-11-18   修回日期: 2020-01-17   网络出版日期: 2020-06-25

基金资助: 国家自然科学基金.  51474170

Corresponding authors: WANG Jingzhong, Tel: 13096935056, E-mail:wzjxjd2003@sina.com

Received: 2019-11-18   Revised: 2020-01-17   Online: 2020-06-25

Fund supported: National Natural Science Foundation of China.  51474170

作者简介 About authors

王敬忠,男,1974年生,副教授

摘要

使用Gleeble-3800 热模拟试验机研究了Ti-62A合金在变形温度为800~950℃、应变速率为0.001~10 s-1条件下的热压缩变形行为。结果表明,随着变形温度的提高出现Ti-62A合金的动态软化率降低的反常现象。(α+β)双相钛合金中Mo、Cr等β稳定元素的原子活性随着温度的升高而逐渐降低和β相比例增大,Jmatpro软件的热力学计算表明(α+β)双相钛合金的这一现象与此有密切关系。而α钛合金和β钛合金出现动态软化速率降低,与加工温度升高β相比例增大的关系更密切。从800℃升高到950℃,Ti-62A合金中β相的比例由32.1%提高到84.3%,Mo、Cr活性的降幅均达到64%。这些因素使变形过程中Ti-62A合金的晶界迁移速度和动态软化速率均随变形温度升高而降低,其950℃的真应力-应变曲线多为典型的动态回复型。α相的含量随着变形温度的提高而降低,且在较高的变形温度下β相的晶粒尺寸也较为粗大。构建的基于应变补偿的Ti-62A合金Arrhenius变形抗力模型,能较好地预测合金的流变应力行为,其相关系数R达到0.990,预测值与实测值的平均相对误差为8.983%。

关键词: 金属材料 ; Ti-62A合金 ; 热压缩 ; 合金元素活度计算 ; 微观组织 ; 应变补偿的本构方程

Abstract

The hot compression deformation behavior of Ti-62A alloy was investigated via Gleeble-3800 thermal simulator by strain rate of 0.001~10 s-1 at 800~950℃. The results show that the dynamic softening rate of Ti-62A alloy decreased with the increase of deformation temperature. This phenomenon existed in the thermal processing of other biphasic titanium alloy, α-titanium alloy and β-titanium alloy. According to the thermodynamic calculation results by Jmatpro software, the phenomenon of (α+β) biphasic titanium alloy is closely related to the decrease of the atomic activity of the main alloy elements Mo, Cr and other β stable elements with the increase of temperature and the increase of β phase ratio. The reason for the decrease of dynamic softening rate of α-titanium alloy and β-titanium alloy is more closely related to the increase of the β phase ratio with the increase of processing temperature. When the temperature rose from 800℃ to 950℃, the proportion of β phase in Ti-62A alloy increased from 32.1% to 84.3%, and the activity of Mo and Cr decreased by 64%, which thereby results in the decrease of grain boundary migration rate and dynamic softening rate of Ti-62A alloy. The true stress-strain curve at 950℃ is mostly a typical dynamic recovery type. The content of α phase decreases with the increase of deformation temperature, and the β grain size is relatively large at higher deformation temperature. The Arrhenius deformation resistance model of Ti-62A alloy was constructed based on strain compensation, with which the rheological stress behavior of Ti-62A alloy can be predicted well, correspondingly, the correlation coefficient R is 0.990, and the average relative error between the predicted value and the measured value is 8.983%.

Keywords: metallic materials ; Ti-62A alloy ; hot compression ; activity calculation of alloying elements ; microstructure ; constitutive equation of strain compensation

PDF (6562KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王敬忠, 丁凯伦, 杨西荣, 刘晓燕. Ti-62A合金动态软化速率异常的热力学解释及其应变补偿本构方程. 材料研究学报[J], 2020, 34(6): 401-409 DOI:10.11901/1005.3093.2019.541

WANG Jingzhong, DING Kailun, YANG Xirong, LIU Xiaoyan. Thermodynamical Explanation for Abnormal Dynamic Softening Rate of Ti-62A Alloy and Constitutive Equation of Strain Compensation. Chinese Journal of Materials Research[J], 2020, 34(6): 401-409 DOI:10.11901/1005.3093.2019.541

为了低成本和长寿命安全飞行,飞机设计必须遵守损伤容限准则。这个准则在航空航天领域的应用,刺激了对高强度、断裂韧性和低疲劳裂纹扩展速率钛合金的需求[1]。Ti-6Al-4VELI和Ti-6-22-22S合金的应用,提高了美国F-22、F-35和C-17等机型的使用寿命和战斗力[2,3,4,5]。国内通过优化成分设计开发出一种新型高强高韧损伤容限型α+β双相钛合金,其成分体系为T-Al-Sn-Zr-Mo-Si-X(X表示一种或多种VB,VIB系列元素)[6,7]。这种合金可制成板材、棒材和各种模锻件,有广阔的应用前景。

Sellars and McTegart [8]提出,可用Arrhenius方程中的正弦-双曲线定律表示材料的流变应力。许多学者修改这个方程以扩大其应用范围[9,10,11],Mandal等[12]和Lin等[13]用应变和应变率补偿的正弦双曲本构方程,分别预测了钛改性奥氏体不锈钢和42CrMo钢的流动应力。吴文祥等[14]为了预测NZ30K合金在热变形过程中的流动应力,基于变形加热的校正数据建立了基于应变补偿的双曲-正弦本构方程。本文进行Ti-62A合金的热压缩试验研究其热变形行为,对实验数据进行多元线性回归拟合研究材料参数与应变量的多项式函数关系,根据应变量对Ti-62A合金热变形行为的影响建立基于应变补偿的Ti-62A合金Arrhenius变形抗力模型。

1 实验方法

实验用材料为100 mm厚的热轧Ti-62A合金板材,其化学组成列于表1,其原始组织由网篮状组织、魏氏组织以及晶间α相组成(图1),αβ相转变温度约为965℃。压缩实验用试样,其直径为8 mm长度为12 mm。用Gleeble-3800热模拟试验机对圆柱试样进行热压缩,应变量为60%,变形温度为800℃、850℃、900℃和950℃,应变速率为0.001 s-1、0.01 s-1、0.1 s-1、1 s-1和10 s-1。变形前将试样以10℃/s的速率加热到变形温度,保温2 min以消除试样内温度梯度,再以设定的应变速率进行压缩实验,变形结束后将试样水冷。

表1   Ti-62A钛合金的化学成分

Table 1  Chemical composition of Ti-62A titanium alloy (mass fraction, %)

AlCrMoZnZrSiFeCNHOTi
5.25~6.251.75~2.251.75~2.251.75~2.251.75~2.250.20~0.27≤0.15≤0.04≤0.03≤0.0125≤0.13Bal.

新窗口打开| 下载CSV


图1

图1   实验用Ti-62A合金的原始组织

Fig.1   Micrograph of the as received Ti-62A alloy


2 结果和讨论

2.1 Ti-62A 合金的流变行为

图2表明,在Ti-62A合金试样受压变形的初始阶段加工硬化占主导,随着应变量的增加流变应力急剧增大,经历很小的应变即达到峰值应力,随后动态回复和动态再结晶引起的软化大于加工硬化,使流变应力迅速减小。当变形量达到某一值时加工硬化与动态软化达到动态平衡,在真应力-应变曲线上流变应力基本上保持不变。图2还表明,在一定的应变速率下流变应力随着变形温度的提高而降低。

图2

图2   在不同变形条件下Ti-62A合金的流变应力曲线

Fig.2   Flow stress curves of Ti-62A alloy under different deformation conditions (a) 0.001 s-1; (b) 0.01 s-1; (c) 0.1 s-1; (d) 1 s-1; (e) 10 s-1


2.2 钛合金在热压缩过程中的动态软化率

无论应变速率多大,Ti-62A合金的动态软化速率都随着变形温度的提高而降低。变形温度较低(800℃)时流变应力曲线大多为动态软化型,而变形温度较高(950℃)时流变应力曲线大多属于动态回复型,中间变形温度(850℃)的流变应力曲线大多属于动态再结晶型,如图2所示。结果表明[15,16,17,18],随着变形温度的提高流变应力曲线表现出的动态软化速率都是降低的。本文根据热力学理论解释这种反常现象。使用JmatPro材料模拟软件分别计算了Ti-62A合金、TC11合金[15]、工业纯钛[19]和TB17合金[23]中关键元素的原子相对活性,结果如图3所示。从图3a可见,温度对Ti-62A合金中Cr和Mo两种元素的原子活性有显著的影响。从800℃升高到950℃,Cr和Mo的原子活性都显著降低。Cr原子的活性从0.206降低到0.074(降幅达到64.1%),Mo的降幅也达到64.3%。温度对TC11合金中Mo元素的原子活性也有显著的影响,从300℃升高到950℃元素Mo的原子活性显著降低(图3b),从0.613降低到0.034(降幅达94.5%)。但是,温度对工业纯钛和TB17合金中各元素的原子活性并没有显著的影响(图3c和3d)。α型钛合金[19,20,21,22]β型钛合金[23,24]的热加工流变应力曲线都表明,随着加工温度的升高动态软化速率降低。为此,本文使用JmatPro材料模拟软件分别计算了Ti-62A合金、工业纯钛和TB17合金中αβ相的比例(图4)。可以看出,三种合金中β相的含量均随着变形温度的升高而提高。温度由800℃升高到950℃,Ti-62A合金中的β相含量由32.1%提高到84.3%,工业纯钛和β钛合金中β相的比例均已提高到100%。在三种钛合金的高温变形过程中都可能存在形变诱导α相向β相的转变(存在晶体结构有hcp结构向bcc结构的转变),消耗部分变形能使其在较高温度下变形的动态软化率较低。

图3

图3   钛合金中合金元素的活性随温度的变化

Fig.3   Change of alloy element activity with temperature in titanium alloy (a) Ti-62A alloy; (b) TC11 alloy; (c) Commercially pure titanium; (d) TB17 alloy


图4

图4   钛合金中α相和β相的比例随温度的变化

Fig.4   Change of the ratio of α phase and β phase with temperature in titanium alloy (a) Ti-62A alloy; (b) Commercially pure titanium; (c) TB17 alloy


可以推测,α型钛合金和β型钛合金出现动态软化率随变形温度升高而降低的现象和相比例的变化,与β相比例的增大密切相关;但是,α+β双相钛合金的这一现象则可能是主要合金元素Mo、Cr等β稳定元素的原子活性随温度升高逐渐降低与β相比例增大共同作用的结果。这表明,合金元素、相比例和变形温度对Ti-62A合金的热变形行为都有显著的影响。这种合金的αβ相的转变温度约为965℃,即随着变形温度(800~950℃)的提高变形试样中β相的比例增大。上述两种元素在β相(bcc结构)中的活性较低,导致上述反常现象。

2.3 变形温度对Ti-62A 合金显微组织的影响

图5给出了Ti-62A合金在应变速率为0.001 s-1、不同温度下热压缩变形后的金相照片。变形温度为800℃时,合金的显微组织由片状的初生α相和β转变组织组成(图5a);变形温度为850℃时片状α相的数量减少,β转变组织的尺寸增大(图5b);变形温度为900℃时α相发生了动态再结晶或球化,β相发生再结晶,产生新的等轴β晶粒(图5c);变形温度为950℃时β晶粒完全回复与再结晶,出现粗大的等轴 β晶粒,α相几乎消失(图5d)。可以看出,随着变形温度的升高β晶粒通过晶界迁移粗化,使变形合金中β相的比例增高。这表明,随着变形温度的升高更多的α相向β相转变。这个转变需要能量且随着变形温度的升高Ti-62A中主要合金元素Cr、Mo的活性降低,使流变应力曲线表现出的应变软化速率随着变形温度的升高反而降低。

图5

图5   在应变速率为 0. 001 s-1、不同温度条件下热压缩变形后Ti-62A 合金的显微组织

Fig.5   Microstructure of Ti-62A alloy deformed by hot compression at different temperatures with strain rate of 0.001 s-1 (a) 800℃, (b) 850℃, (c) 900℃, (d) 950℃


图6给出了Ti-62A合金经应变速率为1 s-1、在不同温度热压缩变形后的显微组织照片。与图5中金相相比,尽管应变速率高了3个数量,Ti-62A合金的微观组织仍表现出相同的变化规律。变形温度为800℃时α相与β转变组织都发生了弯曲(图6a);图 6b、6c和6d中的变形分别为经1 s-1和850℃、900℃和950℃热压缩变形,Ti-62A合金的显微组织由片层状的初生α相与β转变组织组成。随着变形温度的升高α相含量降低,β转变组织逐渐增多,且β晶粒尺寸增大(图6b~d)。但是图5d和图6d表明,变形温度同为950℃,应变速率对等轴β相的晶粒尺寸影响显著,前者的晶粒尺寸明显大于后者。从图6d还可以看出,在1 s-1和950℃变形条件下仍有少量的片状α相没有向β相转变。

图6

图6   在应变速率为1 s-1、不同温度条件下变形的Ti-62A合金的显微组织

Fig.6   Microstructure of Ti-62A alloy deformed by hot compression at different temperatures with strain rate of 1 s-1 (a) 800℃, (b) 850℃, (c) 900℃, (d) 950℃


在热变形过程中,温度对Ti-62A合金的热变形组织有显著的影响。随着加工温度的升高,β相比例逐渐增大。由于β相的晶体结构为体心立方结构(bcc),具有较高层错能,而且其中的滑移系比密排六方结构的α相多,容易发生以位错攀移和滑移为机制的动态回复。这使合金中难以储存足够能量使合金发生动态再结晶,即抑制了Ti-62A合金热变形过程中的动态再结晶行为。因此,变形温度较高(950℃)时,流变应力曲线多属于动态回复型。同时,Ti-62A合金中Cr、Mo甚至Ti元素随着变形温度升高活性降低,也阻碍了合金在热变形过程中的动态再结晶。

2.4 基于应变补偿的 Arrhenius 本构模型

图2中的流变应力曲线和文献[14,25]的结果都表明,应变量对流变应力有显著的影响。因此,建立材料本构方程时考虑应变,可能更准确的预测流变应力。假设材料常数(即α,n,Q和lnA)为应变的多项式函数[12,13],在材料的本构方程中引入应变这一影响因素。本文使用传统的本构模型计算出应变为0.05~0.9(间隔为0.05)的Ti-62A合金的常数αnQ和lnA的值。对这些数据进行2~8次多项式的拟合和比较,其中5次多项式适合表示应变对Ti-62A合金常数的影响,即

α=C0+C1ε+C2ε2+C3ε3+C4ε4+C5ε5n=D0+D1ε+D2ε2+D3ε3+D4ε4+D5ε5Q=E0+E1ε+E2ε2+E3ε3+E4ε4+E5ε5lnA=F0+F1ε+F2ε2+F3ε3+F4ε4+F5ε5

式中CDEF为拟合系数。表2给出了Ti-62A合金的常数α,n,Q和ln A的多项式拟合结果。

表2   Ti-62A合金常数拟合参数

Table 2  Constant fitting parameters of Ti-62A alloy

αnQlnA
C0=0.00924D0=1.91645E0=398.95592F0=36.20351
C1=0.01367D1=3.79583E1=-271.00142F1=-21.10215
C2=-0.05939D2=-13.6498E2=137.81848F2=-11.71244
C3=0.14321D3=31.05524E3=584.16655F3=112.84221
C4=-0.1574D4=-35.64127E4=-1548.1067F4=-209.55112
C5=0.06308D5=15.75986E5=960.56284F5=116.99094

新窗口打开| 下载CSV


Ti-62A合金在试验条件范围内任意应变下的流变应力本构方程可表示为

σ=1αln(ε˙exp(QRT)/A)1n+(ε˙exp(QRT)/A)2n+112

将使用公式(2)计算的流变应力值与实测值的比较,验证了基于应变补偿所建立的本构方程,图7给出了在不同试验条件下Ti-62A合金流变应力的计算值与实测值。从图7可见,所建立本构关系的计算值与实测值大部分曲线非常接近,较精确地反映了流变应力与应变速率、变形温度和应变量之间的关系。

图7

图7   应变补偿的本构方程模拟流变应力曲线与实验流变应力曲线

Fig.7   Comparison of the flow stress curves simulated with strain-compensated constitutive equations and experimental flow stress curves (a) 0.001 s-1; (b) 1 s-1


为了评价基于应变补偿的本构方程对流变应力的预测能力,引入相关系数(R)和平均相对误差(AARE)作为衡量应变补偿本构方程准确性的指标,其表达式为

R=i=1N(Ei-E¯)(Pi-P¯)i=1N(Ei-E¯)2i=1N(Pi-P¯)2
AARE(%)=1Ni=1NEi-PiEi×100%

式中Ei为实验所测的流变应力值(MPa);Pi为由应变补偿本构方程计算的流变应力值(MPa);E¯P¯分别为EiPi的均值;N为热模拟试验机采集数据点的数量。

图8给出了Ti-62A合金的应变补偿本构方程的计算值与试验值的相关性对比。误差分析结果表明,使用应变补偿本构方程的计算值与试验值的相关性R为0.990;平均相对误差(AARE)为8.983%。平均相对误差小于10%,表明该模型与试验数据吻合良好。由此可见,本文建立的基于应变补偿的Ti-62A合金流变应力模型能较为准确地描述Ti-62A钛合金在热变形过程中的应力流动变化行为。

图8

图8   Ti-62A合金的应变补偿方程计算值与实测流变应力值的相关性

Fig.8   Correlation between calculated value of strain compensation equation and measured value of flow stress in Ti-62A alloy


3 结论

(1) 在变形温度800~950℃、应变速率0.001~-10 s-1 条件下Ti-62A合金的流变应力对变形温度和应变速率的影响较为敏感,流变应力随着变形温度的降低和应变速率的升高而升高。α钛合金和β钛合金出现动态软化率随着变形温度的升高而降低的现象,与β相比例的增大密切相关;而α+β双相钛合金的这一现象则与主要合金元素的Mo、Cr等β稳定元素随温度升高而逐渐降低、β相比例增大有更大的相关性。从800℃升高到950℃变形试样中β相的比例逐渐增大,Mo、Cr两种元素在β相(bcc结构)中的活性降低。在变形温度范围内Mo和Cr的活性降幅均达到64%,导致变形过程中Ti-62A合金的晶界迁移速度和动态软化速率均随着变形温度的升高而降低,其在较低变形温度(800℃)下的流变应力曲线呈现为动态软化型,在较高变形温度(950℃)下的流变应力曲线反而呈动态回复型。

(2) 变形温度对Ti-62A合金热变形组织的影响显著,变形温度在800~950℃升高合金的中α相由较粗大的片层状发生球化,而且α相的数量逐渐减少;β相由α相片层间的微量比例随着温度的升高逐渐增大,在950℃变形条件下合金的组织完全转变为等轴状的β相。

(3) 考虑应变对材料常数(即α,n,Qln A)的影响建立了Ti-62A合金的应变补偿的本构方程,预测应力和实测值之间的相关系数(R)达到0.990,平均相对误差(AARE)为8.983%,表明根据应变补偿本构方程能较好地预测Ti-62A合金的流变应力行为。

参考文献

Cao C X.

Change of material selection criterion and development of high damage-tolerant titanium alloy

[J]. Acta. Metall. Sin., 2002, 38(S1): 4

[本文引用: 1]

(曹春晓.

选材判据的变化与高损伤容限钛合金的发展

[J]. 金属学报, 2002, 38(s1): 4)

[本文引用: 1]

Fu Y Y, Song Y Q, Hui S X, et al.

Research and Application of Typical Aerospace Titanium Alloys

[J]. Chinese Journal of Rare Metals, 2006, 30(6): 850

[本文引用: 1]

Li S K, Xiong B Q, Hui S X.

Effects of cooling rate on the fracture properties of TA15 ELI alloy plates

[J]. Rare Metals, 2007, 26(1): 33

DOI      URL     [本文引用: 1]

AbstractThe effects of cooling rate on the mechanical properties and the fatigue crack growth behavior of TA15 ELI alloy plates with different microstructures were investigated at room temperature. The results indicate that the cooling rate (water quench, air cooling, and furnace cooling) has a pronounced influence on the mechanical properties and on the fatigue crack growth, especially for air cooling and furnace cooling. Optical microstructure observation and scanning electron microscopy of tensile fracture surfaces were performed to gain an insight into the mechanism of properties. The dependence of mechanical properties and fatigue crack growth behavior on the cooling rate can be attributed to the α lamellae width and the α colony size, which induce the change in slip length. The microstructure produced by air cooling shows the best damage tolerance behavior when compared with water quench and furnace cooling.]]>

Wood J R, Russo P A, Welter M F, et al.

Thermomechanical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications

[J]. Mater. Sci. Eng. A, 1998, 243(1-2): 109

DOI      URL     [本文引用: 1]

Arrieta A J.

Multidisciplinary Design Optimization of a Fighter Aircraft with Damage Tolerance Constraints and a Probabilistic Model of the Fatigue Environment

[D]. America: University of Oklahoma Graduate College, 2001

[本文引用: 1]

Yu Y, Hui S X, Ye W J, et al.

Effect of heat treatment process on the mechanical properties of T-Al-Sn-Zr-Mo-Si-X series alloys

[J]. Heat. Treat. Met, 2005, 30(12): 68

[本文引用: 1]

(于洋, 惠松骁, 叶文君.

热处理对Ti-Al-Sn-Zr-Mo-Si-X系合金性能的影响

[J]. 金属热处理, 2005, 30(12): 68)

[本文引用: 1]

Yu Y, Hui S X, Ye W J, et al.

Mechanical properties and microstucture of an α+β titanium alloy with high strength and fracture toughnes

[J]. Rare Metals, 2009, 28(4): 346

DOI      URL     [本文引用: 1]

The Ti-Al-Sn-Zr-Cr-Mo-V-Si (Ti-62A) alloy, an alpha-beta alloy with high strength and fracture toughness, is currently used as an advanced structural material in aerospace and non-aerospace applications. Thermo-mechanical processes can be used to optimize the relationship between its strength and fracture toughness. A Ti-62A alloy bar can be machined through a transus β-forged plus α+β solution treated and aged specimen with a lamellar alpha microstructure. The effects of heat treatment on the mechanical properties were discussed. Heat treatment provided a practical balance of strength, fracture toughness, and fatigue crack growth resistance. A comparison of the Ti-62A alloy with the Ti-62222S alloy under the same thermo-mechanical processing conditions showed that their properties are at the same level.]]>

Sellars C M, McTegart W J.

On the mechanism of hot deformation

[J]. Acta Metallurgica, 1966, 14(9): 1136

DOI      URL     [本文引用: 1]

Li F G, Wang X N, Yu X L.

A New Optimization Method of Constitutive Equation for Hot Working Based on Physical Simulation and Numerical Simulation

[C]// Materials Science Forum. Trans Tech Publications, 2008: 402

[本文引用: 1]

He X, Yu Z, Liu G, et al.

Mathematical modeling for high temperature flow behavior of as-cast Ti-45Al-8.5 Nb-(W, B, Y) alloy

[J]. Mater. Des, 2009, 30(1): 166

DOI      URL     [本文引用: 1]

Yu X, Li F, Li M.

Modeling and optimization of general constitutive equation of semi-solid thixoforming

[J]. Chin. J. Mech. Eng, 2007, 43(10): 72

[本文引用: 1]

Mandal S, Rakesh V, Sivaprasad P V, et al.

Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel

[J]. Mater. Sci. Eng. A, 2009, 500(1-2): 114

DOI      URL     [本文引用: 2]

Lin Y C, Chen M S, Zhong J.

Constitutive modeling for elevated temperature flow behavior of 42CrMo steel

[J]. Comp. Mater. Sci, 2008, 42(3): 470

DOI      URL     [本文引用: 2]

WU W X, Li J, Jie D, et al.

Prediction of flow stress of Mg-Nd-Zn-Zr alloy during hot compression

[J]. T. Nonferr. Metal. Soc, 2012, 22(5): 1169

DOI      URL     [本文引用: 2]

Isothermal hot compression tests were carried out on Mg-3.0Nd-0.2Zn-0.4Zr ( mass fraction, %, NZ30K) alloy using a Gleeble-3500 thermo-simulation machine at temperatures ranging from 350 to 500 C and strain rates from 0.001 to 1 s(-1). A correction of flow stress for deformation heating at a high strain rate was carried out. Based on the corrected data for deformation heating, a hyperbolic sine constitutive equation was established. The constants in the constitutive equation of the hyperbolic sine form were determined as a function of strain. The flow stresses predicted by the developed equation agree well with the experimental results, which confirms that the developed constitutive equations can be used to predict the flow stress of NZ30K alloy during hot deformation.

Jiang X L.

Investigation of microstructure evolution and thermal deformation behavior of TC11 titanium alloy

[D]. Shenyang: Northeastern University, 2011

[本文引用: 2]

(江想莲.

TC11钛合金热变形行为及其组织演变规律的研究

[D]. 沈阳: 东北大学, 2011)

[本文引用: 2]

Dai J.

Hot Deformation Behavior and Processing Map of Titanium Alloy TC21

[D]. Nanchang: Nanchang Hangkong University, 2015

[本文引用: 1]

(戴俊.

TC21钛合金热态变形行为及加工图

[D]. 南昌: 南昌航空大学, 2015)

[本文引用: 1]

Zhang H F.

Studies on High Temperature Deformation Mechanics Behavior of Ti-6Al-2Sn Alloy

[D]. Taiyuan: North University of China, 2009

[本文引用: 1]

(张慧芳.

Ti-6Al-2Sn钛合金高温变形力学行为研究

[D]. 太原:中北大学, 2009)

[本文引用: 1]

Liu K, Huang H G, Qin T C, et al.

High temperature compression deformation behavior and microstructure evolution of TC4 titanium alloy

[J]. Special Casting & Nonferrous Alloys, 2019, (9): 936

[本文引用: 1]

(刘昆, 黄海广, 秦铁昌.

TC4钛合金高温压缩变形行为与组织演变

[J]. 特种铸造及有色合金, 2019, (9): 936)

[本文引用: 1]

Chai X Y, GAO Z Y, Pan T, et al.

Constitutive equation for flow behavior of commercially pure titanium TA2 during hot deformation

[J]. Chinese Journal of Engineering, 2018, 40(2): 226

[本文引用: 2]

(柴希阳, 高志玉, 潘涛.

工业纯钛TA2热变形过程的流变行为本构方程

[J]. 工程科学学报, 2018, 40(2): 226)

[本文引用: 2]

Ren W B, Li J, Yu H, et al.

Hot Deformation Behaviors and Processing Map of TA17 Titanium Alloy

[J]. Iron Steel Vanadium Titanium, 2017, 38(2): 46

[本文引用: 1]

(任万波, 李军, 于辉.

TA17 钛合金热变形行为及加工图

[J]. 钢铁钒钛, 2017, 38(2): 46)

[本文引用: 1]

Yang J, Wang Y Q, Li X M, et al.

Study on hot deformation behavior and processing map of TA15 titanium alloy

[J]. China Titanium Industry, 2015(2): 29

[本文引用: 1]

(杨军, 王永强, 李献民.

TA15钛合金热变形行为及加工图研究

[J]. 中国钛业, 2015 (2): 29)

[本文引用: 1]

Xiong Y S, Wang Q Q, Xiang W, et al.

Hot deformation behavior of TA15 titanium alloy for aerospace

[J]. Journal of Plasticity Engineering, 2017(3): 184

[本文引用: 1]

(熊运森, 王茜茜, 向伟.

航空用TA15钛合金热变形行为研究

[J]. 塑性工程学报, 2017(3): 184)

[本文引用: 1]

Zhou S W.

Study on hot deformation behavior and microstructure evolution simulation of TB17 titanium alloy

[D]. Nanchang: Nanchang Hangkong University, 2018

[本文引用: 2]

(周盛武.

TB17钛合金热变形行为及显微组织演变模拟研究

[D]. 南昌: 南昌航空大学, 2018)

[本文引用: 2]

He D.

Study on Hot Deformation Behavior and Processing Map of a New β Titanium Alloy Based on Friction Correction

[D]. Xi'an: Xi'an University of architecture and technology, 2016

[本文引用: 1]

(何丹.

基于摩擦修正的新型β钛合金热变形行为与加工图研究

[D]. 西安:西安建筑科技大学, 2016)

[本文引用: 1]

Pu E, Feng H, Liu M, et al.

Constitutive modeling for flow behaviors of super-austenitic stainless steel S32654 during hot deformation

[J]. J. Iron. Steel. Res. Int, 2016, 23(2): 178

DOI      URL     [本文引用: 1]

/