Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 285-290    DOI: 10.11901/1005.3093.2019.367
  研究论文 本期目录 | 过刊浏览 |
添加Bi2WO6ZnO基压敏陶瓷电学性能的影响
林文文, 贺笑春, 徐志军, 王子恒, 初瑞清()
烟台大学环境与材料工程学院 烟台 264005
Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics
LIN Wenwen, HE Xiaochun, XU Zhijun, WANG Ziheng, CHU Ruiqing()
School of Environmental Materials and Engineering, Yantai University, Yantai 264005,China
引用本文:

林文文, 贺笑春, 徐志军, 王子恒, 初瑞清. 添加Bi2WO6ZnO基压敏陶瓷电学性能的影响[J]. 材料研究学报, 2020, 34(4): 285-290.
Wenwen LIN, Xiaochun HE, Zhijun XU, Ziheng WANG, Ruiqing CHU. Influence of Bi2WO6 on Electric Properties of ZnO Varistor Ceramics[J]. Chinese Journal of Materials Research, 2020, 34(4): 285-290.

全文: PDF(4205 KB)   HTML
摘要: 

用传统固相反应法研究了添加Bi2WO6(x=0%~9%,质量分数)对ZnO基压敏陶瓷的微观结构、压敏性能和介电性能的影响。结果表明:掺入适量的Bi2WO6能促进ZnO压敏陶瓷晶粒均匀生长、提高微观结构的均匀性、降低压敏场强和提高非线性系数;同时,Bi2WO6的添加可提高ZnO晶粒表面吸附氧的含量,从而提高界面态密度和势垒高度以及ZnO基压敏陶瓷的非线性特性。Bi2WO6的添加量为7%的ZnO基压敏陶瓷,其综合性能为:E1 mA=263 V/mm,α=53,JL=3.50 μA/cm2φb=11.52 eV。

关键词 无机非金属材料ZnO基压敏陶瓷Bi2WO6微观结构电学性能    
Abstract

The ZnO-based varistor ceramics with addition of different amount of Bi2WO6 were prepared by conventional solid state reaction and then their surface morphology and electrical properties were examined. Results show that appropriate Bi2WO6-dopping can promote the uniform growth of ZnO varistor ceramic grains, improve their uniformity of microstructure, reduce the breakdown voltage and increase the nonlinear coefficient. In addition, Bi2WO6 can increase the content of absorbed oxygen on the surface of ZnO, thereby enhance the density of the interfacial state and barrier height, correspondingly, optimize the nonlinear characteristic of ZnO varistor ceramics. For the ZnO-based varistor ceramics with x=7% (mass fraction) Bi2WO6, presents excellent properties: the nonlinear coefficient α is as high as 53, corresponding to the highly barrier height φb of 11.52 eV, whilst the leakage current JL and the breakdown voltage are as low as 3.50 μA/cm2 and 263 V/mm, respectively.

Key wordsinorganic non-metallic materials    ZnO varistor ceramics    Bi2WO6    microstructure    electrical properties
收稿日期: 2019-07-23     
ZTFLH:  TB321  
基金资助:国家重点研发计划(No. 2016YFB0402701);山东省重点研发计划(No. GG201809190252);山东省自然科学基金(No. ZR2016EMM02)
作者简介: 林文文,女,1994年生,硕士
图1  不同Bi2WO6含量样品的XRD图谱
图2  不同含量Bi2WO6样品的SEM照片
Bi2WO6/%d/μmE1 mA/V·mm-1Vgb/VαJL/μA·cm-2
05.862911.71441.01
14.003971.593720.64
35.393651.971541.26
55.683121.774510.93
78.462632.22533.50
95.832981.742811.37
表1  ZnO基压敏陶瓷的宏观电性能参数
图3  ZnO基压敏陶瓷的电流-电压(E-J)曲线
图4  ZnO基压敏陶瓷的(1/C-1/2C0)2-Vgb关系曲线
Bi2WO6/%Nd/1025·m-3Ns/1017·m-2φb/eVt/10-8m
01.2042.374.971.97
10.831.643.451.98
30.821.512.941.84
50.802.246.672.8
70.592.5211.524.3
90.581.323.182.27
表2  ZnO基压敏陶瓷的微观电性能参数
图5  压敏陶瓷的介电性能
[1] Gupta T K. Application of Zinc-Oxide varistors [J]. J. Am. Ceram. Soc., 1990, 73(7): 1817
doi: 10.1002/adma.201403707 pmid: 25655302
[2] Clarke D R. Varistor ceramics [J]. J. Am. Ceram. Soc., 1990, 82(3): 485
[3] Xu G Y, Xie G Z, Tao J, et al. Mn ion valence change and ZnO varistor ceramics V-I nonlinear character [J]. Chin. J. Mater. Res., 2000, 14(2): 198
[3] (徐国跃, 谢国治, 陶杰等. Mn离子的价态变化与ZnO压敏陶瓷的V-I非线性 [J]. 材料研究学报, 2000, 14(2): 1998)
[4] Cheng P F, Li S T. Soft core phenomenon of ZnO varistors doped with rare-earth oxides [J]. Chin. J. Mater. Res., 2006, 20(4): 395
[4] (成鹏飞,李盛涛. 掺杂稀土氧化物的ZnO-Bi2O3系压敏陶瓷的“软心” [J]. 材料研究学报, 2006, 20(4): 395)
[5] Mahan G D, Levinson L M, Philipp H R. Theory of conduction in ZnO varistors [J]. J. Appl. Phys., 1979, 50(4): 2799
[6] Winston R A, Cordaro J F. Grain boundary interface electron traps in commercial zinc oxide varistors [J]. J. Appl. Phys., 1990, 68(12): 6495
[7] Xu G Y, Ma L X, Xie G Z. V-I nonlinear and negative temperature coefficient of ZnO/Co2O3 base unit material of sensitive resistance [J]. J. Funct. Mater., 2000, 31(5): 516
[7] (徐国跃, 马立新, 谢国治. ZnO/Co2O3敏感电阻单元材料V-I非线性及NTC效应 [J]. 功能材料, 2000, 31(5): 516)
[8] Gopel W, Lampe U. Influence of defects on the electronic structure of zinc oxide surfaces [J]. Phys. Rev. B, 1980, 22(12): 6447
doi: 10.1002/adma.201503404 pmid: 26936217
[9] Bai H R, Sun Y, Xu Z J, et al. Influence of Bi-Co-O synthetic multi-phase on electrical properties of the ZnO-Bi2O3-MnO2-SiO2 varistors [J]. Mater. Lett., 2017, 209: 115
[10] Xiao X K, Zheng L Y, Cheng L H, et al. Influence of WO3-Doping on the microstructure and electrical properties of ZnO-Bi2O3 varistor ceramics sintered at 950℃ [J]. J. Am. Ceram. Soc., 2014, 98(4): 1
[11] Zhou W. Defect fluorite superstructures in the Bi2O3-WO3 system [J]. J. Solid State Chem., 1994, 108(2): 381
[12] Kim N, Vannier R N, Grey C P. Detecting different oxygen-ion jump pathways in Bi2WO6 with 1and 2- dimensional 17O MAS NMR spectroscopy [J]. Chem. Mater., 1952, 17(8): 2005
[13] Taoufyq A, Ahsaine H A, Patout L, et al. Electron microscopy analyses and electrical properties of the layered Bi2WO6 phase [J]. J. Solid State Chem., 2013, 203: 8
[14] Leng S, Li G, Zheng L, et al. Influences of Ba/Ti ratios on the positive temperature coefficient of resistivity effect of Y-doped BaTiO3-(Bi1/2Na1/2)TiO3 ceramics [J]. J. Am. Ceram. Soc., 2011, 94(5): 1340
[15] Wurst J C, Nelson J A. Lineal intercept technique for measuring grain size in two-phase polycrystalline ceramics [J]. J. Am. Ceram. Soc., 1972, 55(2): 109
[16] Xu Z J, Bai H R, Ma S, et al. Effect of a Bi-Cr-O synthetic multi-phase on the microstructure and electrical properties of ZnO-Bi2O3 varistor ceramics [J]. Ceramics Int., 2016, 3(21): 1
[17] Wan S, Lv W Z, Liu W. Phase transformation and electrical properties of Bi2O3-based ZnO varistor doped with WO3 [J]. Jap. J. Appl. Phys., 2010, 49: 1
[18] Bai H R,The study on low temperature preparation and properties and Zn-Bi based varistor ceramics [D]. Liaocheng: LiaoCheng University, 2017
[18] (白海瑞. Zn-Bi系压敏陶瓷的低温制备及性能研究 [D]. 聊城: 聊城大学, 2017)
[19] Li X, Lu Z Y, Chen Y C, et al. High voltage ZnO varistor ceramics doped with Sb2O3, SiO2 and MgO [J]. Rare Met. Mater. Eng., 2015, 44(1): 129
[19] (李潇, 卢振亚, 陈奕创等. Sb2O3, SiO2和MgO 复合掺杂的高梯度氧化锌压敏陶瓷材料 [J]. 稀有金属材料与工程, 2015, 44(1): 129)
[20] Nahm C W, Shin B C, Min B H. Microstructure and electrical properties of Y2O3-doped ZnO-Pr6O11-based varistor ceramics [J]. J. Mater. Chem., 2003, 82(1): 157
[21] Ju J H, Wang H, Xu J W. Microstructures and electrical properties of V2O5-doped ZnO-Bi2O3-Co2O3-MnCO3-TiO2 low voltage varistor ceramics [J]. J. Chin. Ceram. Soc., 2011, 39(11): 1813
[21] (巨锦华, 王华, 许积文. V2O5掺杂ZnO-Bi2O3-Co2O3-MnCO3-TiO2低压压敏陶瓷的微结构和电性能 [J]. 硅酸盐学报, 2011, 39(11): 1813)
[22] Ezhilvalavan S, Kutty T R N. Effect of antimony oxide stoichiometry on the nonlinearity of Zinc Oxide varistor ceramics [J]. Mater. Chem. Phys., 1997, 49(3): 258
[23] Shuk P, Wiemhofer H D, Guth U, Greenblatt M. Oxide ion conducting solid electrolytes based on Bi2O3 [J]. Solid State Ionics, 1996, 89(3-4): 179
[24] Fan J, Freer R. The roles played by Ag and Al dopants in controlling the electrical properties of ZnO varistors [J]. J. Appl. Phys., 1995, 77(9): 4795
[25] Bai H R, Li M M, Xu Z J, et al. Influence of SiO2 on electrical properties of the highly nonlinear ZnO-Bi2O3-MnO2 varistors [J]. J. Am. Ceram. Soc., 2017, 100(3): 3965
[26] Cai J N, Lin Y H, Li M, et al. Sintering temperature dependence of grain boundary resistivity in a rare-earth-Doped ZnO varistor [J]. J. Am. Ceram. Soc., 2017, 90(1): 291
doi: 10.1111/jace.2007.90.issue-1
[27] Nahm C W. Effect of sintering temperature on varistor properties and aging characteristics of ZnO-V2O5-MnO2 ceramics [J]. Ceram. Int., 2009, 35(7): 2679
doi: 10.1016/j.ceramint.2009.03.011
[28] Bai H R, Zhang M H, Xu Z J, et al. The effect of SiO2 on electric properties on low-temperature-sintered ZnO-Bi2O3-TiO3-Co2O3-MnO2-based ceramics [J]. J. Ceram. Soc., 2016, 100(3): 1
doi: 10.1111/jace.14496
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[11] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[12] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[13] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[14] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.