Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (12): 918-926    DOI: 10.11901/1005.3093.2019.329
  研究论文 本期目录 | 过刊浏览 |
TB6钛合金β区变形的动态再结晶动力学
欧阳德来1,鲁世强1,崔霞1(),徐勇1,杜海明2,朱慧安1
1. 南昌航空大学材料科学与工程学院 南昌 330063
2. 江西师范大学 南昌 330022
Kinetics of Dynamic Recrystallization of TB6 Ti-Alloy During Hot Compressive Deformation atTemperatures of β-phase Range
Delai OUYANG1,Shiqiang LU1,Xia CUI1(),Yong XU1,Haiming DU2,Huian ZHU1
1. School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2. Jiangxi Normal University, Nanchang 330022, China
引用本文:

欧阳德来,鲁世强,崔霞,徐勇,杜海明,朱慧安. TB6钛合金β区变形的动态再结晶动力学[J]. 材料研究学报, 2019, 33(12): 918-926.
Delai OUYANG, Shiqiang LU, Xia CUI, Yong XU, Haiming DU, Huian ZHU. Kinetics of Dynamic Recrystallization of TB6 Ti-Alloy During Hot Compressive Deformation atTemperatures of β-phase Range[J]. Chinese Journal of Materials Research, 2019, 33(12): 918-926.

全文: PDF(6086 KB)   HTML
摘要: 

使用圆柱形TB6钛合金试样在Thermecmaster-Z型热模拟试验机上进行热模拟压缩实验(变形温度为825~1100℃,应变速率为0.001~1 s-1)。对采集的流变数据进行加工硬化率处理,确定动态再结晶体积分数,研究了TB6钛合金β区变形的动态再结晶动力学。结果表明,流变应力随着变形温度的降低或应变速率的提高而增大,流变曲线呈现出动态再结晶类型的特征。随着应变速率的降低和变形温度的提高,动态再结晶的体积分数和晶粒尺寸增大。在变形温度高于950℃、应变速率低于0.001 s-1条件下,动态再结晶的晶粒严重粗化。动态再结晶动力学曲线经历缓慢增加—快速增加—缓慢增加三个阶段,呈现出典型的“S”型特征。确定了动态再结晶的体积分数达到50%时的应变,建立了TB6钛合金的动态再结晶动力学模型。

关键词 金属材料TB6钛合金加工硬化率动态再结晶动力学    
Abstract

Hot compression tests of as-forged Ti-alloy TB6 were conducted via thermecmaster-Z hot simulation test machine through rapid heating the alloy up to the temperature range for the presence of β-phase and then compression tests by strain rates of 0.001~1 s-1 at temperatures in the range of 825~1100℃, while the dynamic recrystallization (DRX) volume fraction were acquired by processing the collected rheological data during compression deformation with work hardening rate approach, then the kinetics of DRX of the alloy deformed at β-phase temperature was studied. The results show that the stress increases with the decrease of deformation temperature or the increase of strain rate, and the stress-strain curves present the type of DRX. With the decrease of strain rate and the increase of deformation temperature, the DRX volume fraction and the grain size of dynamic recrystallization increase. The DRX grain coarsening is observed for the alloy deformed at temperatures above 950℃ and strain rates below 0.001 s-1. The DRX kinetics curves possess three typical stages: slow increase-fast increase-slow increase, showing a typical "S" type characteristic. Furthermore, the strain corresponding to the presence of 50% DRX volume fraction was determined and the relevant DRX kinetics model of TB6 Ti-alloy is established.

Key wordsmetallic materials    TB6 titanium alloy    work hardening rate    DRX    Kinetics
收稿日期: 2019-07-04     
ZTFLH:  TG 146.4  
基金资助:国家自然科学基金(51761029);国家自然科学基金(51864035)
作者简介: 欧阳德来,男,1977年生,副教授
图1  TB6钛合金原始棒材的组织
图2  TB6钛合金在不同热变形条件下的应力-应变曲线
图3  锻态TB6钛合金在不同热变形条件下的金相组织(ε=1.61)
图4  动态再结晶和虚拟动态回复时的应力-应变曲线示意图
图5  材料的加工硬化率曲线示意图
图6  TB6钛合金在变形温度为825℃、应变速率为0.001 s-1条件下的应力-应变曲线和θ-σ曲线
图7  TB6钛合金在应变速率为0.001 s-1、变形温度为825℃条件下的应力-应变曲线和动态再结晶动力学曲线
图8  TB6钛合金在应变速率为0.001 s-1不同变形温度条件下的应力-应变曲线
图9  TB6钛合金在应变速率为0.001 s-1不同变形温度条件下的θ-σ曲线
图10  TB6钛合金在应变速率为0.001 s-1不同变形温度条件下的动态再结晶动力学曲线
图11  TB6钛合金在不同热变形条件下的动态再结晶动力学曲线
图12  TB6钛合金在825℃、应变速率为0.01 s-1条件下的动态再结晶动力学曲线
图13  TB6钛合金在不同热变形条件下的动态再结晶ε0.5值
图14  ln[-ln(1-XdRX)]与ln[(ε-εc)/ε0.5]的关系曲线
[1] Kapoor R, Reddy G B, Sarkar A. Discontinuous dynamic recrystallization in α-Zr [J]. Mater. Sci. Eng., A, 2018, 718: 104
[2] Liu J, Wang X, Liu J, et al. Hot deformation and dynamic recrystallization behavior of Cu-3Ti-3Ni-0.5Si alloy [J]. J. Alloys Compd., 2019, 782: 224
[3] Nicola? A, Fiorucci G, Franchet J M, et al. Influence of strain rate on subsolvus dynamic and post-dynamic recrystallization kinetics of Inconel 718 [J]. Acta Mater., 2019, 174: 406
[4] Qu J, Xie X, Bi Z, et al. Hot deformation characteristics and dynamic recrystallization mechanism of GH4730 Ni-based superalloy [J]. J. Alloys Compd., 2019, 785: 918
[5] Chen M, Lin Y C, Ma X. The kinetics of dynamic recrystallization of 42CrMo steel [J]. Mater. Sci. Eng., A, 2012, 556: 260
[6] Xu Y, Chen C, Zhang X, et al. Dynamic recrystallization kinetics and microstructure evolution of an AZ91D magnesium alloy during hot compression [J]. Mater. Charact., 2018, 145: 39
[7] Ma C, Wang G C. Superplastic tensile experiment by the fixed m value method at high-temperature for titanium alloy TB6 [J]. Forging & Stamping Technology, 2016, 41(10): 88
[7] (马 超, 王高潮. TB6钛合金定m值法高温超塑性拉伸试验研究 [J]. 锻压技术. 2016, 41(10): 88)
[8] G?ken J, Fayed S, Skubisz P. Strain-Dependent Damping of Ti-10V-2Fe-3Al at Room Temperature [J]. Acta Phys. Pol., A, 2016, 130(6): 1352
[9] Illarionov A G, Trubochkin A V, Shalaev A M, et al. Isothermal Decomposition of β-Solid Solution in Titanium Alloy Ti-10 V-2Fe-3Al [J]. Met. Sci. Heat Treat., 2017, 58(11-12): 674
[10] Wu J, Zou S, Zhang Y, et al. Microstructures and mechanical properties of β forging Ti17 alloy under combined laser shock processing and shot peening [J]. Surf. Coat. Tech., 2017, 328: 283
[11] Bao R Q, Huang X, Cao C X. Deformation behavior and mechanisms of Ti-1023 alloy [J]. T Nonferr Metal Soc., 2006, 16(2): 274
[12] Ouyang D L, Fu M W, Lu S Q. Study on the dynamic recrystallization behavior of Ti-alloy Ti-10V-2Fe-3V in β processing via experiment and simulation [J]. Mater. Sci. Eng., A, 2014, 619(0): 26
[13] Ji G, Li Q, Li L. The kinetics of dynamic recrystallization of Cu-0.4Mg alloy [J]. Mater. Sci. Eng., A, 2013, 586: 197
[14] Jia D, Sun W, Xu D, et al. Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation [J]. J. Mater. Sci. Technol., 2019, 35(9): 1851
[15] Zhang Y, Liu P, Tian B H, et al. Dynamic recrystallization behavior of Cu-Ni-Si-P alloy [J]. T Mater Heat Treat, 2010, 31(7): 45
[15] (张 毅, 刘 平, 田保红等. Cu-Ni-Si-P合金动态再结晶行为 [J]. 材料热处理学报, 2010, 31(7): 45
[16] Ouyang D L, Cui X, Lu S Q, et al. Hot compressive deformation behavior and dynamic recrystallization of as-forged titanium alloy TB6 during β process [J]. Chin J Mater Res., 2019, 33(03): 218
[16] (欧阳德来, 崔 霞, 鲁世强等. 锻态TB6钛合金β相区压缩变形行为和动态再结晶 [J]. 材料研究学报. 2019, 33(03): 218)
[17] Prasad G V, Goerdeler M, Gottstein G. Work hardening model based on multiple dislocation densities [J]. Mater. Sci. Eng., A, 2005, 400-401: 231
[18] Rollett A D, Kocks U F. A Review of the Stages of Work Hardening [J]. Solid State Phenom., 1993, 35-36(36): 1
[19] Wang M, Li Y, Wang W, et al. Quantitative Analysis of Work Hardening and Dynamic Softening Behavior of low carbon alloy Steel Based on the Flow Stress [J]. Mater. Des., 2013, 45: 384
[20] Wahabi M E, Cabrera J M, Prado J M. Hot working of two AISI 304 steels: a comparative study [J]. Mater. Sci. Eng., A, 2003, 343(1): 116
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.