Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (12): 881-891    DOI: 10.11901/1005.3093.2019.281
  研究论文 本期目录 | 过刊浏览 |
Cu元素对挤压剪切ZK60合金组织性能及织构演变的影响
代帅1,2,王峰1,2(),王志1,2,刘正1,2,毛萍莉1,2
1. 沈阳工业大学材料科学与工程学院 沈阳 110870
2. 辽宁省镁合金及成形技术重点实验室 沈阳 110870
Effect of Cu Addition on Microstructure, Mechanical Property and Texture Evolution of Extrusion-shearing ZK60 Mg-alloy
Shuai DAI1,2,Feng WANG1,2(),Zhi WANG1,2,Zheng LIU1,2,Pingli MAO1,2
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2. Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang 110870, China
引用本文:

代帅,王峰,王志,刘正,毛萍莉. Cu元素对挤压剪切ZK60合金组织性能及织构演变的影响[J]. 材料研究学报, 2019, 33(12): 881-891.
Shuai DAI, Feng WANG, Zhi WANG, Zheng LIU, Pingli MAO. Effect of Cu Addition on Microstructure, Mechanical Property and Texture Evolution of Extrusion-shearing ZK60 Mg-alloy[J]. Chinese Journal of Materials Research, 2019, 33(12): 881-891.

全文: PDF(8397 KB)   HTML
摘要: 

采用金属型铸造方法制备ZK60及ZK60+1.0Cu(质量分数,%)合金,并对两种合金进行均匀化热处理与两步复合挤压剪切成形。利用OM、SEM、EDS、XRD、EBSD、TEM及室温拉伸-压缩实验研究了挤压剪切合金的显微组织、相组成及力学性能。结果表明:向ZK60合金中加入1.0Cu后,合金α-Mg基体中出现三元MgZnCu相。ZK60+1.0Cu合金成形区平均晶粒尺寸为1.56 μm,其远小于ZK60合金(4.68 μm),且MgZnCu相附近存在着尺寸为300±45 nm的亚晶粒。相比于ZK60合金,ZK60+1.0Cu合金成形区拥有着较弱的{0001}基面织构,且织构基极和挤压方向(ED)夹角发生转变,造成ZK60+1.0Cu合金成形区中存在着更多易于{0001}<112ˉ0>基面滑移启动的动态再结晶(DRX)晶粒。ZK60+1.0Cu合金成形区的拉伸及压缩强度明显高于ZK60合金,其主要归因于晶界强化,而拉伸伸长率的降低和硬质MgZnCu相带来的微孔聚集有关。

关键词 金属材料Mg-Zn-Cu-Zr合金显微组织织构演变力学性能    
Abstract

The as-cast Mg-alloys ZK60 and ZK60+1.0Cu (mass fraction, %) were fabricated by permanent mold casting, then, the homogenization heat treatment and two-step extrusion-shearing process were performed for the alloys. The microstructure, phase constitution and mechanical properties of the extrusion-shearing alloys were characterized by means of OM, SEM, EDS, XRD, EBSD, TEM and tensile-compression test at ambient temperature. Results indicated that the ternary MgZnCu phase could be observed in the interiors of α-Mg matrix of the alloy with addition of 1.0Cu. The quantitatively measured average grain size of α-Mg matrix of ZK60+1.0Cu alloy in the forming area was 1.56 μm, which was much less than that of ZK60 alloy (4.68 μm). Furthermore, the sub-grains of 300±45 nm in size were observed around the MgZnCu phase. The ZK60+1.0Cu alloy in the forming area possessed weaker {0001} basal texture while the angle between basal pole and extrusion direction (ED) was changed as compared with ZK60 alloy, resulted in the existence of more dynamic recrystallization (DRX) grains, which was beneficial to {0001}<112ˉ0> basal slip. The tensile and compressive strength of ZK60+1.0Cu alloy in the forming area was obviously higher than that of ZK60 alloy owing to the grain boundary strengthening, and the occurrence of micro-voids near or within the fractured MgZnCu phase mainly accounted for the decrease of tensile elongation.

Key wordsmetallic materials    Mg-Zn-Cu-Zr alloy    microstructure    texture evolution    mechanical property
收稿日期: 2019-05-29     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51504153);辽宁省“兴辽英才计划”(XLYC1807021);辽宁省高等学校基本科研项目(LQGD2017032);沈阳市中青年科技创新人才支持计划(RC180111)
作者简介: 代 帅,男,1992年生,硕士生
AlloyNominal compositionActual composition
ZK60Mg-6Zn-0.6ZrMg-5.8Zn-0.61Zr
ZK60+1.0CuMg-6Zn-1.0Cu-0.6ZrMg-5.9Zn-1.1Cu-0.58Zr
表1  合金的化学成分
图1  两步复合挤压剪切实验流程示意图
图2  挤压剪切合金挤压区及成形区中显微组织的OM像
图3  挤压剪切合金成形区SEM像及EDS分析
图4  挤压剪切ZK60+1.0Cu合金成形区中SEM像及面扫描元素分布图
图5  挤压剪切ZK60及ZK60+1.0Cu合金XRD图谱
图6  挤压剪切ZK60+1.0Cu合金成形区的TEM像
图7  挤压剪切合金EBSD取向图及微观极图
图8  挤压剪切合金应变分布及局部区域极图
图9  挤压剪切合金成形区取向差分布图
图10  挤压剪切合金成形区基面滑移Schmid因子分布图
图11  挤压剪切合金成形区拉伸及压缩应力-应变曲线
Alloys

UTS

/MPa

TYS

/MPa

CYS

/MPa

δ

/%

CYS

/TYS

ZK60400±10342±7267±527±0.40.78±0.3
ZK60+1.0Cu425±12382±9317±726±0.40.83±0.3
表2  挤压剪切合金成形区拉伸及压缩实验结果
图12  挤压剪切合金成形区断口形貌、纵切面SEM像及EDS分析
[1] Kulekci M K. Magnesium and its alloys applications in automotive industry [J]. International Journal of Advanced Manufacturing Technology, 2009, 39(9-10): 851
[2] Lin C Y, Bor H Y, Chao C G, et al. Enhanced ductility of the ZA85 magnesium alloy fabricated by equal-channel angular pressing [J]. Journal of Alloys & Compounds, 2013, 556(4): 26
[3] Xiong J J, Chen Z Y, Liu Y, et al. Microstructure and mechanical properties of annealed Mg-0.6wt%Zr sheets by unidirectional and cross rolling [J]. Materials Science & Engineering: A, 2014, 590(1): 60
[4] Bai Y, Cheng W L, Ma S C, et al. Influence of initial microstructure on the strengthening effect of extruded Mg-8Sn-4Zn-2Al alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 487
[5] Zhao Z D, Chen Q, Wang Y B, et al. Microstructures and mechanical properties of AZ91D alloys with Y addition [J]. Materials Science & Engineering A, 2009, 515(1): 152
[6] Wan Y C, Jiang S N, Liu C M, et al. Effect of Nd and Dy on the microstructure and mechanical property of the as extruded Mg-1Zn-0.6Zr alloy [J]. Materials Science and Engineering: A, 2015, 625: 158
[7] Park S H, Kim S H, Kim H S, et al. High-speed indirect extrusion of Mg-Sn-Al-Zn alloy and its influence on microstructure and mechanical properties [J]. Journal of Alloys & Compounds, 2016, 667: 170
[8] Kim S H, Lee J U, Kim Y J, et al. Controlling the microstructure and improving the tensile properties of extruded Mg-Sn-Zn alloy through Al addition [J]. Journal of Alloys and Compounds, 2018, 751: 1
[9] Pan F S, Mao J J, Zhang G, et al. Development of high-strength, low-cost wrought Mg-2.0mass%Zn alloy with high Mn content [J]. Progress in Natural Science: Materials International, 2016, 26(6): 630
[10] Chen X H, Liu L Z, Pan F S, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys [J]. Materials Science and Engineering: B, 2015, 197: 67
[11] Figueiredo R B, Langdon T G. The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP [J]. Materials Science & Engineering: A, 2006, 430(1): 151
[12] Wang M Y, Xin R L, Wang B S, et al. Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling [J]. Materials Science & Engineering: A, 2011, 528: 2941
[13] Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing [J]. Acta Materialia, 2003, 51(11): 3293
[14] Kim W J, An C W, Kim Y S, et al. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing [J]. Scripta Materialia, 2002, 47(1): 39
[15] Dumitru F D, Higuera-Cobos O F, Cabrera J M. ZK60 alloy processed by ECAP: Microstructural, physical and mechanical characterization [J]. Materials Science and Engineering: A, 2014, 594: 32
[16] Zhang D F, Hu H J, Pan F S, et al. Numerical and physical simulation of new SPD method combining extrusion and equal channel angular pressing for AZ31 magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 478
[17] Dai S, Wang F, Wang Z, et al. The microstructure and mechanical properties of hot-extruded Mg-6Zn-xCu-0.6Zr (x=0, 0.5, 1.0, 1.5) alloys [J]. Hot Working Technology, 2018, 47(3): 28
[17] (代 帅, 王 峰, 王 志等. 热挤压Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,1.5)合金的显微组织及力学性 [J]. 热加工工艺, 2018, 47(3): 28)
[18] Shahzad M, Wagner L. Microstructure development during extrusion in a wrought Mg-Zn-Zr alloy [J]. Scripta Materialia, 2009, 60(7): 536
[19] Zhu H M, Sha G, Liu J W, et al. Microstructure and mechanical properties of Mg-6Zn-xCu-0.6Zr (wt.%) alloys [J]. Journal of Alloys and Compounds, 2011, 509: 3526
[20] Buha J, Ohkubo T. Natural aging in Mg-Zn(-Cu) alloys [J]. Metallurgical & Materials Transactions A, 2008, 39(9): 2259
[21] Oh-Ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys [J]. Acta Materialia, 2009, 57(18): 5593
[22] Wang B S, Shi J J, Ye P, et al. Analysis of {10-12} twinning variants’ selection behavior during multi-directional compression in Mg-3Al-1Zn magnesium alloy[J]. Journal of Materials Science, 2019, 54(13): 9797
[23] Zhao H, Wang L Q, Ren Y P, et al. Microstructure, mechanical properties and corrosion behavior of extruded Mg-Zn-Ag alloys with single-phase structure [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 575
[24] Yin D S, Zhang E L, Zeng S Y. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 763
[25] Pan H C, Fu H, Ren Y P, et al. Effect of Cu/Zn on microstructure and mechanical properties of extruded Mg-Sn alloys [J]. Materials Science and Technology, 2016,16: 1743
[26] Xin Y C, Wang M Y, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability [J]. Scripta Materialia, 2011, 64(10): 986
[27] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Materialia, 2003, 51(7): 2055
[28] Yan H, Xu S W, Chen R S, et al. Activation of {10-12} twinning and slip in high ductile Mg-2.0Zn-0.8Gd rolled sheet with non-basal texture during tensile deformation at room temperature [J]. Journal of Alloys & Compounds, 2013, 566(8): 98
[29] Valle J A D, Carreno F, Ruano O A. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling [J]. Acta Materialia, 2006, 54(16): 4247
[30] Barnett M R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins [J]. Materials Science & Engineering A, 2007, 464(1): 8
[31] Ando D, Koike J, Sutou Y. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys [J]. Acta Materialia, 2010, 58(13): 4316
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.