|
|
Cu元素对挤压剪切ZK60合金组织性能及织构演变的影响 |
代帅1,2,王峰1,2( ),王志1,2,刘正1,2,毛萍莉1,2 |
1. 沈阳工业大学材料科学与工程学院 沈阳 110870 2. 辽宁省镁合金及成形技术重点实验室 沈阳 110870 |
|
Effect of Cu Addition on Microstructure, Mechanical Property and Texture Evolution of Extrusion-shearing ZK60 Mg-alloy |
Shuai DAI1,2,Feng WANG1,2( ),Zhi WANG1,2,Zheng LIU1,2,Pingli MAO1,2 |
1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China 2. Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province, Shenyang 110870, China |
引用本文:
代帅,王峰,王志,刘正,毛萍莉. Cu元素对挤压剪切ZK60合金组织性能及织构演变的影响[J]. 材料研究学报, 2019, 33(12): 881-891.
Shuai DAI,
Feng WANG,
Zhi WANG,
Zheng LIU,
Pingli MAO.
Effect of Cu Addition on Microstructure, Mechanical Property and Texture Evolution of Extrusion-shearing ZK60 Mg-alloy[J]. Chinese Journal of Materials Research, 2019, 33(12): 881-891.
[1] | Kulekci M K. Magnesium and its alloys applications in automotive industry [J]. International Journal of Advanced Manufacturing Technology, 2009, 39(9-10): 851 | [2] | Lin C Y, Bor H Y, Chao C G, et al. Enhanced ductility of the ZA85 magnesium alloy fabricated by equal-channel angular pressing [J]. Journal of Alloys & Compounds, 2013, 556(4): 26 | [3] | Xiong J J, Chen Z Y, Liu Y, et al. Microstructure and mechanical properties of annealed Mg-0.6wt%Zr sheets by unidirectional and cross rolling [J]. Materials Science & Engineering: A, 2014, 590(1): 60 | [4] | Bai Y, Cheng W L, Ma S C, et al. Influence of initial microstructure on the strengthening effect of extruded Mg-8Sn-4Zn-2Al alloys [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(5): 487 | [5] | Zhao Z D, Chen Q, Wang Y B, et al. Microstructures and mechanical properties of AZ91D alloys with Y addition [J]. Materials Science & Engineering A, 2009, 515(1): 152 | [6] | Wan Y C, Jiang S N, Liu C M, et al. Effect of Nd and Dy on the microstructure and mechanical property of the as extruded Mg-1Zn-0.6Zr alloy [J]. Materials Science and Engineering: A, 2015, 625: 158 | [7] | Park S H, Kim S H, Kim H S, et al. High-speed indirect extrusion of Mg-Sn-Al-Zn alloy and its influence on microstructure and mechanical properties [J]. Journal of Alloys & Compounds, 2016, 667: 170 | [8] | Kim S H, Lee J U, Kim Y J, et al. Controlling the microstructure and improving the tensile properties of extruded Mg-Sn-Zn alloy through Al addition [J]. Journal of Alloys and Compounds, 2018, 751: 1 | [9] | Pan F S, Mao J J, Zhang G, et al. Development of high-strength, low-cost wrought Mg-2.0mass%Zn alloy with high Mn content [J]. Progress in Natural Science: Materials International, 2016, 26(6): 630 | [10] | Chen X H, Liu L Z, Pan F S, et al. Microstructure, electromagnetic shielding effectiveness and mechanical properties of Mg-Zn-Cu-Zr alloys [J]. Materials Science and Engineering: B, 2015, 197: 67 | [11] | Figueiredo R B, Langdon T G. The development of superplastic ductilities and microstructural homogeneity in a magnesium ZK60 alloy processed by ECAP [J]. Materials Science & Engineering: A, 2006, 430(1): 151 | [12] | Wang M Y, Xin R L, Wang B S, et al. Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling [J]. Materials Science & Engineering: A, 2011, 528: 2941 | [13] | Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing [J]. Acta Materialia, 2003, 51(11): 3293 | [14] | Kim W J, An C W, Kim Y S, et al. Mechanical properties and microstructures of an AZ61 Mg Alloy produced by equal channel angular pressing [J]. Scripta Materialia, 2002, 47(1): 39 | [15] | Dumitru F D, Higuera-Cobos O F, Cabrera J M. ZK60 alloy processed by ECAP: Microstructural, physical and mechanical characterization [J]. Materials Science and Engineering: A, 2014, 594: 32 | [16] | Zhang D F, Hu H J, Pan F S, et al. Numerical and physical simulation of new SPD method combining extrusion and equal channel angular pressing for AZ31 magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(3): 478 | [17] | Dai S, Wang F, Wang Z, et al. The microstructure and mechanical properties of hot-extruded Mg-6Zn-xCu-0.6Zr (x=0, 0.5, 1.0, 1.5) alloys [J]. Hot Working Technology, 2018, 47(3): 28 | [17] | (代 帅, 王 峰, 王 志等. 热挤压Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,1.5)合金的显微组织及力学性 [J]. 热加工工艺, 2018, 47(3): 28) | [18] | Shahzad M, Wagner L. Microstructure development during extrusion in a wrought Mg-Zn-Zr alloy [J]. Scripta Materialia, 2009, 60(7): 536 | [19] | Zhu H M, Sha G, Liu J W, et al. Microstructure and mechanical properties of Mg-6Zn-xCu-0.6Zr (wt.%) alloys [J]. Journal of Alloys and Compounds, 2011, 509: 3526 | [20] | Buha J, Ohkubo T. Natural aging in Mg-Zn(-Cu) alloys [J]. Metallurgical & Materials Transactions A, 2008, 39(9): 2259 | [21] | Oh-Ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys [J]. Acta Materialia, 2009, 57(18): 5593 | [22] | Wang B S, Shi J J, Ye P, et al. Analysis of {10-12} twinning variants’ selection behavior during multi-directional compression in Mg-3Al-1Zn magnesium alloy[J]. Journal of Materials Science, 2019, 54(13): 9797 | [23] | Zhao H, Wang L Q, Ren Y P, et al. Microstructure, mechanical properties and corrosion behavior of extruded Mg-Zn-Ag alloys with single-phase structure [J]. Acta Metallurgica Sinica (English Letters), 2018, 31(6): 575 | [24] | Yin D S, Zhang E L, Zeng S Y. Effect of Zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(4): 763 | [25] | Pan H C, Fu H, Ren Y P, et al. Effect of Cu/Zn on microstructure and mechanical properties of extruded Mg-Sn alloys [J]. Materials Science and Technology, 2016,16: 1743 | [26] | Xin Y C, Wang M Y, Zeng Z, et al. Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability [J]. Scripta Materialia, 2011, 64(10): 986 | [27] | Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys [J]. Acta Materialia, 2003, 51(7): 2055 | [28] | Yan H, Xu S W, Chen R S, et al. Activation of {10-12} twinning and slip in high ductile Mg-2.0Zn-0.8Gd rolled sheet with non-basal texture during tensile deformation at room temperature [J]. Journal of Alloys & Compounds, 2013, 566(8): 98 | [29] | Valle J A D, Carreno F, Ruano O A. Influence of texture and grain size on work hardening and ductility in magnesium-based alloys processed by ECAP and rolling [J]. Acta Materialia, 2006, 54(16): 4247 | [30] | Barnett M R. Twinning and the ductility of magnesium alloys: Part II. “Contraction” twins [J]. Materials Science & Engineering A, 2007, 464(1): 8 | [31] | Ando D, Koike J, Sutou Y. Relationship between deformation twinning and surface step formation in AZ31 magnesium alloys [J]. Acta Materialia, 2010, 58(13): 4316 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|