|
|
CuO/ZnO复合光催化剂的制备和性能 |
谢亮1,王平1,李之锋1( ),刘德红1,吴瑛2 |
1. 江西理工大学材料科学与工程学院 赣州 341000 2. 浙江纳巍负离子科技有限公司 杭州 310000 |
|
Hydrothermal Synthesis and Photocatalytic Activity of CuO/ZnO Composite Photocatalyst |
XIE Liang1,WANG Ping1,LI Zhifeng1( ),LIU Dehong1,WU Ying2 |
1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China 2. Zhejiang NAVIION Technology Co. , Ltd, Hangzhou 310000, China |
引用本文:
谢亮,王平,李之锋,刘德红,吴瑛. CuO/ZnO复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(10): 728-734.
Liang XIE,
Ping WANG,
Zhifeng LI,
Dehong LIU,
Ying WU.
Hydrothermal Synthesis and Photocatalytic Activity of CuO/ZnO Composite Photocatalyst[J]. Chinese Journal of Materials Research, 2019, 33(10): 728-734.
[1] | Zhu L Y, Li H, Liu Z ,et al. Synthesis of the 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity [J]. The Journal of Physical Chemistry C, 2018, 122(17): 9531 | [2] | Zhu M, Zhai C, Qiu L ,et al. New method to synthesize S-doped TiO2 with stable and highly efficient photocatalytic performance under indoor sunlight irradiation [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(12): 3123 | [3] | Cai J B, Wu X Q, Li S ,et al. Synthesis of TiO2@WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity [J]. Acs Sustainable Chemistry & Engineering, 2016, 4(3): 1581 | [4] | Luo J, Zhao A T. Synthesis and photocatalytic properties of cucuribit[6] uril-CdS composite photocatalyst [J]. Journal of the Chinese Ceramic Society, 2017, 45(1): 83 | [4] | 罗 娟, 赵安婷. 六元瓜环-CdS复合光催化剂的合成及其光催化性能 [J]. 硅酸盐学报, 2017, 45(1): 83 | [5] | Chen Y, Zhang P, Shang Y H, et al. Controllable synthesis and photocatalytic activity of ZnO nano-cones with different aspect ratio [J]. Chinese Journal of Materials Research, 2017, 31(8): 61 | [5] | 陈 燕, 张 萍, 尚永辉等. 不同纵横比 ZnO 纳米锥的可控合成及其光催化性能 [J]. 材料研究学报, 2017, 31(8): 61 | [6] | Zhu S, Chen X, Zuo F,et al. Controllable synthesis of ZnO nanograss with different morphologies and enhanced performance in dye-sensitized solar cells [J]. Journal of Solid State Chemistry, 2013, 197(1): 69 | [7] | Fang X M, Zeng Z, Gao S Yet al. Low-temperature preparation and photocatalytic activity of eco-friendly nanocone forest-like arrays of ZnO [J]. Chinese Journal of Materials Research, 2018, 32(12): 945 | [7] | 方向明, 曾 值, 高世勇等. ZnO纳米锥丛林阵列的低温制备和光催化性能 [J]. 材料研究学报, 2018, 32(12): 945 | [8] | Tripathy N, Ahmad R, H Kuket al. Rapid methyl orange degradation using porous ZnO spheres photocatalyst [J]. Journal of Photochemistry and Photobiology B: Biology, 2016, 161: 312 | [9] | Huang N, Shu J, Wang Zet al. One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation [J]. Journal of Alloys & Compounds, 2015, 648: 919 | [10] | Ba-Abbad M M, Kadhum A A, Mohamad A B ,et al. Visible light photocatalytic activity of Fe(3+)-doped ZnO nanoparticle prepared via sol-gel technique [J]. Chemosphere, 2013, 91(11): 1604 | [11] | Cerrato E, Gionco C, Berruti I ,et al. Rare earth ions doped ZnO: Synthesis, characterization and preliminary photoactivity assessment [J]. Journal of Solid State Chemistry, 2018, 264: 42 | [12] | Zong X, Sun C, Yu H ,et al. Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light [J]. Journal of Physical Chemistry C, 2013, 117(10): 4937 | [13] | Li R, Yu L M, Yan X F, et al. Morphology-controlled preparation and photocatalytic properties of Cu2O/ZnO microstructures [J]. Chemical Journal of Chinese Universities, 2017, 38(2): 267 | [13] | 李 如, 于良民, 闫雪峰等. Cu2O/ZnO的形貌可控制备及光催化性能 [J]. 高等学校化学学报, 2017, 38(2): 267 | [14] | Han Z Y, Li Y J, Lin X ,et al. Preparation and photoelectrocatalytic performance of Fe2O3/ZnO composite electrode loading on conductive glass [J]. Chemical Journal of Chinese Universities, 2018, 39(4): 771 | [14] | 韩志英, 李佑稷, 林 晓等. 导电玻璃负载Fe2O3/ZnO 复合光电极的制备及光电催化性能 [J]. 高等学校化学学报, 2018, 39(4): 771 | [15] | He X, Liu H R, Dong H L, et al. Synthesis and photocatalytic properties of ZnO/In2O3 heteronanostructures [J]. Journal of Inorganic Materials, 2014, 29(3): 264 | [15] | 何 霞, 刘海瑞, 董海亮等. ZnO/In2O3纳米异质结的合成及其光催化性能的研究 [J]. 无机材料学报, 2014, 29(3): 264 | [16] | Liu Z L, Deng J C, Deng J J ,et al. Fabrication and photocatalysis of CuO/ZnO nano-composites via a new method [J]. Materials Science & Engineering B, 2008, 150(2): 99 | [17] | Asahi R, Morikawa T, Ohwaki T ,et al. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269 | [18] | Hameed A, Gombac V, Montini T ,et al. Synthesis, characterization and photocatalytic activity of NiO-Bi2O3 nanocomposites [J]. Chemical Physics Letters, 2009, 472(4-6): 212 | [19] | Yu J J, Liao B, Zhang X ,et al. Fabrication of CuO nanowires on copper foams by thermal oxidation and investigation of their photocatalytic properties [J]. Chinese Journal of Rare Metals, 2016, 40(10): 1021 | [19] | 于晶晶, 廖 斌, 张 旭等. 热氧化法在泡沫铜上制备 CuO 纳米线及其光催化性能研究 [J]. 稀有金属, 2016, 40(10): 1021 | [20] | Li G., Dimitrijevic N.M., Chen L. ,et al. Role of surface/interfacial Cu2+ sites in the photocatalytic activity of coupled CuO-TiO2 nanocomposites [J]. Journal of Physical Chemistry C, 2008, 112(48): 19040 | [21] | Zhang J, Chen T, Yu J ,et al. Enhanced photocatalytic activity of flowerlike CuO-ZnO nanocomposites synthesized by one-step hydrothermal method [J]. Journal of Materials Science Materials in Electronics, 2016, 27(10): 1 | [22] | Mansournia M, Ghaderi L. CuO@ZnO core-shell nanocomposites: Novel hydrothermal synthesis and enhancement in photocatalytic property [J]. Journal of Alloys and Compounds, 2016: S0925838816326676. | [23] | Hui F, Yanxia G, Tong W ,et al. Biomimetic synthesis of urchin-like CuO/ZnO nanocomposite with excellent photocatalytic activity [J]. New Journal of Chemistry, 2018, 42: 12779 | [24] | Lu H B, Li H, Liao L ,et al. Low-temperature synthesis and photocatalytic properties of ZnO nanotubes by thermal oxidation of Zn nanowires [J]. Nanotechnology, 2008, 19(4): 045605 | [25] | Butler M A, Ginley D S, Eibschutz M. Photoelectrolysis with YFeO3 electrodes [J]. Journal of Applied Physics, 1977, 48(7): 3070 | [26] | Mohamed Reda G, Fan H, Tian H. Room-temperature solid state synthesis of Co3O4/ZnO p-n heterostructure and its photocatalytic activity [J]. Advanced Powder Technology, 2017, 28(3): 953 | [27] | Mageshwari K, Nataraj D, Pal T ,et al. Improved photocatalytic activity of ZnO coupled CuO nanocomposites synthesized by reflux condensation method [J]. Journal of Alloys and Compounds, 2015, 625: 362 | [28] | Zheng J, Jiang Z Y, Kuang Q, et al. Shape-controlled fabrication of porous ZnO architectures and their photocatalytic properties [J]. Journal of Solid State Chemistry, 2009, 182(1): 115 | [29] | Dong G, Du B, Liu L,et al. Synthesis and their enhanced photoelectrochemical performance of ZnO nanoparticle-loaded CuO dandelion heterostructures under solar light [J]. Applied Surface Science, 2017, 399: 86 | [30] | Xie Y, Xing R, Li Q ,et al. Three-dimensional ordered ZnO-CuO inverse opals toward low concentration acetone detection for exhaled breath sensing [J]. Sensors and Actuators B: Chemical, 2015, 211: 255 | [31] | Qi L X, Fei F Q, Li L G ,et al. Syntheses of ZnO nano-arrays and spike-shaped CuO/ZnO heterostructure [J]. Acta Phys. Chim. Sin., 2015, 31(4): 783 | [32] | Sungmook J, Kijung Y. Fabrication of CuO-ZnO nanowires on a stainless steel mesh for highly efficient photocatalytic applications [J]. Chemical Communications, 2011, 47(9): 2643 | [33] | Li J, Wang J, Huang L, et al. Photoelectrocatalytic degradation of methyl orange over mesoporous film electrodes [J]. Photochemical and Photobiological Sciences, 2010, 9: 39 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|