Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (11): 837-847    DOI: 10.11901/1005.3093.2019.136
  研究论文 本期目录 | 过刊浏览 |
同素异构转变对退火态Fe-15Mn-10Al-0.3C双相钢塑性的影响
刘营凯1,2,王白冰1,2,刘仁东3,郭金宇3,史文1,2()
1. 上海大学材料科学与工程学院 上海 200444
2. 省部共建高品质特殊钢冶金与制备国家重点实验室 上海 200444
3. 鞍钢股份有限公司技术中心 鞍山 114009
Effect of Allotropic Transformation on Plasticity of Fe-15Mn-10Al-0.3C Dual Phase Steel during Annealing
LIU Yingkai1,2,WANG Baibing1,2,LIU Rendong3,GUO Jinyu3,SHI Wen1,2()
1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
2. State Key Laboratory of Advanced Special Steel, Shanghai 200444, China
3. Technology Center of Ansteel Institute, Anshan 114009, China
引用本文:

刘营凯,王白冰,刘仁东,郭金宇,史文. 同素异构转变对退火态Fe-15Mn-10Al-0.3C双相钢塑性的影响[J]. 材料研究学报, 2019, 33(11): 837-847.
Yingkai LIU, Baibing WANG, Rendong LIU, Jinyu GUO, Wen SHI. Effect of Allotropic Transformation on Plasticity of Fe-15Mn-10Al-0.3C Dual Phase Steel during Annealing[J]. Chinese Journal of Materials Research, 2019, 33(11): 837-847.

全文: PDF(11124 KB)   HTML
摘要: 

将经过不同冷轧处理的Fe-15Mn-10Al-0.3C钢在900℃退火,使用SEM、XRD以及EBSD等手段研究了退火过程中钢的组织和性能的演变。结果表明:在退火过程中冷轧钢的奥氏体带发生了同素异构转变,γ相转变为α相,且转变量随着退火时间的延长而增加;同素异构转变影响退火试样的拉伸变形行为。随着退火时间延长α相和γ相的取向从近邻关系到满足K-S,有利于位错穿过相界滑移,使塑性提高;对于退火时间足够长的冷轧钢,两相之间的K-S关系失去相关性,塑性下降。通过该转变能调控α-铁素体与γ-奥氏体之间滑移系的平行程度,改善Fe-Mn-Al-C钢的塑性。

关键词 金属材料同素异构转变二次冷轧位向关系位错滑移    
Abstract

The evolution of microstructure and properties of Fe-15Mn-10Al-0.3C steel during static annealing after different cold rolling treatments was investigated. The microstructure and properties of the test steel were characterized by means of SEM, XRD and EBSD. The results show that during the annealing process, the austenite bands undergo obvious allotropic transformation, whilst γ-phase transforms to α-phase and the amount of transformation increases with annealing time. The isomeric transformation affects the tensile deformation behavior of the annealed steel, the orientation relationship between the α-phase and the γ-phase changed from the neighbor relationship to the K-S with the prolongation of annealing time, which is beneficial to dislocation sliding across phase boundary and improves plasticity. When the annealing time is long enough, the K-S relationship between the two phases loses coherent and the plasticity is reduced. The transformation can regulate the parallelism of the slip system between the α-ferrite and the γ-austenite, which can improve the plasticity of Fe-Mn-Al-C steel.

Key wordsmetallic materials    allotropic transformation    double cold rolling    orientation relationship    dislocation glide
收稿日期: 2019-03-01     
ZTFLH:  TG142.1+4  
作者简介: 刘营凯,男,1993年生,硕士生
ElementCMnAlFe
Weight percent /%0.2814.809.50Bal
表1  Fe-15Mn-10Al-0.3C实验钢的化学成分(质量分数)
图1  使用Thermo-calc软件计算出的Fe-15Mn-10Al-0.3C钢相分数随温度的变化
图2  Fe-15Mn-10Al-0.3C实验钢的热处理工艺
图3  Fe-15Mn-10Al-0.3C实验钢淬火态和冷轧态的微观组织
图4  Fe-15Mn-10Al-0.3C实验钢一次冷轧后在900℃退火不同时间后的微观组织
图5  一次冷轧试样在 900℃退火后的晶界角度分布、相图和反极图
图6  Fe-15Mn-10Al-0.3C实验钢二次冷轧后在900℃退火不同时间的微观组织
图7  冷轧及退火态试样的XRD谱和同素异构转变统计图
图8  实验钢冷处理后退火不同时间的室温拉伸性能
Test steelYS/MPaUTS/MPaE/%Formability factor/GPa%Yield ration
Annealed after SCRS10 s711.1288711.310.020.8020.13
2 min652.9382019.515.990.7960.15
1 h627.667497.65.690.8370.128
Annealed after DCRS1 0s575.8372917.512.760.7890.15
2 min572.2974023.717.540.7730.156
1 h509.186751912.830.7540.16
表2  退火态试样的室温力学性能
图9  退火不同时间试样中奥氏体相的体积分数和平均晶粒尺寸
图10  退火试样拉伸前后平均位错密度的绝对增量和相对增量
图11  退火态试样α-铁素体的晶粒取向变化
Position

Euler angles

(φ1φφ2)

Position

Euler angles

(φ1φφ2)

1(305.8°46.8°25.2°)7(66.1°43.9°55.2°)
2(305.4°47.0°25.7°)8(114.6°38.2°85.4°)
3(305.6°47.3°25.9°)9(81.0°35.0°80.6°)
4(336.1°35.9°87.2°)10(56.7°43.3°9.7°)
5(183.1°17.0 50.4°)11(206.1°39.7°20.1°)
6(183.1°16.5°51.2°)12(62.7°42.0°54.1°)
表3  退火态试样中所选取不同位置的α-铁素体和γ-奥氏体的欧拉角
图12  退火试样中α相与γ相之间偏离K-S关系图以及两相滑移系平行关系的占比变化趋势
图13  拉伸试样断口处微裂纹的SEM照片
[1] Chen S, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels[J]. Prog. Mater. Sci., 2017, 89: 345
[2] Park K T, Jin K G, Han S H, et al. Stacking fault energy and plastic deformation of fully austenitic high manganese steels: Effect of Al addition[J]. Mater. Sci. Eng. A, 2010, 527(16): 3651
[3] Frommeyer G, Brüx Udo. Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels [J]. Steel Res Int, 2006, 77(9-10): 627
[4] Curtze S, Kuokkala V T, Oikari A, et al. Thermodynamic modeling of the stacking fault energy of austenitic steels [J]. Acta Mater., 2011, 59(3): 1068
[5] Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35 C-3.5 Mn-5.8 Al lightweight steel [J]. Acta Mater., 2013, 61(13): 5050
[6] Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe-Mn-Al-C lightweight steels [J]. JOM, 2014, 66(9): 1857
[7] Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of large plastic deformation on microstructure and mechanical properties of a TWIP steel [J]. IOP Conference Series: Materials Science and Engineering, 2014, 63: 012064
[8] de las Cuevas F., Reis M, Ferraiuolo A, et al. Kinetics of recrystallization and grain growth of cold rolled TWIP steel [J]. Adv. Mater. Res., 2010, 89-91: 6
[9] Wang Z W, Hu P, Shi B L, et al. Effect of cold deformation and recrystallization annealing on grain size of TP304 steel [J]. Heat Treatment of Metals, 2010, 35(3): 17
[9] (王志武, 胡 平, 石宝良等. 冷变形和再结晶退火对TP304钢晶粒度的影响 [J]. 金属热处理, 2010, 35(3): 17)
[10] Behjati P, Kermanpur A, Karjalainen L P, et al. Influence of prior cold rolling reduction on microstructure and mechanical properties of a reversion annealed high-Mn austenitic steel [J]. Mater. Sci. Eng. A, 2016, 650(2): 119
[11] Hu Q Q, Xia P K, Yu P F, et al. Effect of cooling rate on microstructure and mechanical properties of light Fe-Mn-Al steel [J]. Shanghai Metal, 2017, 39(3): 24
[11] (胡钱钱, 夏培康, 余鹏飞等. 冷却速率对轻质Fe-Mn-Al钢组织及力学性能的影响 [J]. 上海金属, 2017, 39(3): 24)
[12] Cai Z H, Li H Y, Jing S Y, et al. Influence of annealing temperature on microstructure and tensile property of cold-rolled Fe-0.2C-11Mn-6Al steel [J]. Mater. Charact., 2018, 137
[13] Karimi Y, Hossein Nedjad S, Miyamoto G, et al. Banding effects on the process of grain refinement by cold deformation and recrystallization of acicular C-Mn steel [J]. Mater. Sci. Eng. A, 2017, 697: 1
[14] Zhou P, Liang Z Y, Liu R D, et al. Evolution of dislocations and twins in a strong and ductile nanotwinned steel [J]. Acta Mater., 2016, 111: 96
[15] Shi J, Sun X, Wang M, et al. Enhanced work-hardening behavior and mechanical properties in ultrafine-grained steels with large-fractioned metastable austenite [J]. Scr. Mater., 2010, 63(8): 815
[16] Li Z C, Ding H, Misra R D K, et al. Microstructure-mechanical property relationship and austenite stability in medium-Mn TRIP steels: The effect of austenite-reverted transformation and quenching-tempering treatments [J]. Mater. Sci. Eng. A, 2017, 682: 211
[17] Cai Z H, Ding H, Misra R D K, et al. Mechanistic contribution of the interplay between microstructure and plastic deformation in hot-rolled Fe-11Mn-2/4Al-0.2C steel [J]. Mater. Sci. Eng. A, 2016, 652: 205
[18] Yang F Q, Song R B, Li Y P, et al. Effect of annealing temperature on properties of cold rolled Fe-Mn-Al-C low density steel [J]. Chin. J. Mater. Res., 2015, 29(2): 108
[18] (杨富强, 宋仁伯, 李亚萍等. 退火温度对冷轧Fe-Mn-Al-C低密度钢性能的影响 [J]. 材料研究学报, 2015, 29(2): 108)
[19] Sun G S, Du L X, Hu J, et al. Microstructural evolution and recrystallization behavior of cold rolled austenitic stainless steel with dual phase microstructure during isothermal annealing [J]. Mater. Sci. Eng. A, 2018, 709: 254
[20] Zhang J L, Raabe D, Tasan C C. Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics [J]. Acta Mater., 2017, 141: 374
[21] Guo E Y, Wang M Y, Jing T, et al. Temperature-dependent mechanical properties of an austenitic–ferritic stainless steel studied by in situ tensile loading in a scanning electron microscope (SEM) [J]. Mater. Sci. Eng. A, 2013, 580(10): 159
[22] Serre I, Salazar D, Vogt J B. Atomic force microscopy investigation of surface relief in individual phases of deformed duplex stainless steel [J]. Mater. Sci. Eng. A, 2008, 492(1): 428
[23] Guo E Y, Xie H X, Singh S S, et al. Mechanical characterization of microconstituents in a cast duplex stainless steel by micropillar compression [J]. Mater. Sci. Eng. A, 2014, 598: 98
[24] Taisne A, Décamps, B, Priester L. Role of interfaces in duplex stainless steel deformation micromechanisms [J]. Compos. Interfaces, 2006, 13(1): 89
[25] Fréchard S, Martin F, Clément Ch, et al. AFM and EBSD combined studies of plastic deformation in a duplex stainless steel [J]. Mater. Sci. Eng. A, 2006, 418(1-2): 312
[26] Zhang J. Phase field simulation of Austenite-ferrite transformation in Fe-C-Mn ternary alloy [D]. Hefei: University of Science and Technology of China, 2017
[26] (张 军. Fe-C-Mn三元合金中奥氏体-铁素体相变的相场模拟 [D]. 合肥: 中国科学技术大学, 2017)
[27] Bugat S, Besson J, Gourgues A F, et al. Microstructure and damage initiation in duplex stainless steels [J]. Mater. Sci. Eng. A-Struct. Mater., 2001, 317(1-2): 32
[28] Cheng W C, Chih-Yao Cheng, Hsu Chia-Wei, et al. Phase transformations of an Fe-0.85C-17.9Mn-7.1Al austenitic steel after quenching and annealing [J]. JOM, 2014, 66(9): 1809
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.