Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 588-596    DOI: 10.11901/1005.3093.2018.693
  研究论文 本期目录 | 过刊浏览 |
铸态和T6热处理Al-Si-Cu-Ni-Ce-Cr铸造耐热铝合金的组织和力学性能
赵天佑,郭二军,冯义成(),赵思聪,付原科,王丽萍
哈尔滨理工大学材料科学与工程学院 哈尔滨 150040
Microstructure and Mechanical Properties of as Cast and Heat-treated Al-Si-Cu-Ni-Ce-Cr
Tianyou ZHAO,Erjun GUO,Yicheng FENG(),Sicong ZHAO,Yuanke FU,Liping WANG
School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China
引用本文:

赵天佑, 郭二军, 冯义成, 赵思聪, 付原科, 王丽萍. 铸态和T6热处理Al-Si-Cu-Ni-Ce-Cr铸造耐热铝合金的组织和力学性能[J]. 材料研究学报, 2019, 33(8): 588-596.
Tianyou ZHAO, Erjun GUO, Yicheng FENG, Sicong ZHAO, Yuanke FU, Liping WANG. Microstructure and Mechanical Properties of as Cast and Heat-treated Al-Si-Cu-Ni-Ce-Cr[J]. Chinese Journal of Materials Research, 2019, 33(8): 588-596.

全文: PDF(30248 KB)   HTML
摘要: 

使用OM、SEM观察、XRD物相分析和拉伸性能测试等手段研究了铸态、固溶态和时效Al-Si-Cu-Ni-Ce-Cr铸造耐热铝合金的组织和力学性能。结果表明:对Al-Si-Cu-Ni-Ce-Cr合金进行490℃×2 h+520℃×2 h双步固溶处理,不仅使θ-Al2Cu相完全固溶进基体中,还使更多的γ-Al7Cu4Ni相和δ-Al3CuNi相充分固溶进基体中,实现了更好的固溶效果;经过490℃×2 h+520℃×2 h和185℃×6 h热处理后,Al-Si-Cu-Ni-Ce-Cr合金的室温抗拉强度为336.8 MPa、高温(300℃)抗拉强度为153.3 MPa,比铸态分别提高了74%和19.3%。

关键词 金属材料显微组织力学性能耐热铝合金固溶处理时效处理    
Abstract

The microstructure and mechanical properties of Al-Si-Cu-Ni-Ce-Cr alloy after different heat treatment were investigated by optical microscope, scanning electron microscope, X-ray diffraction and universal tensile testing. Results show that the θ-Al2Cu phase completely dissolved into the matrix and the γ-Al7Cu4Ni and most of the δ-Al3CuNi phases dissolved into the matrix after two steps solution treatment. When the Al-Si-Cu-Ni-Ce-Cr alloy was treated by 490°C×2 h+520°C×2 h+185°C× 6 h, the ultimate tensile strength at room temperature and 300°C is 336.8 MPa and 153.3 MPa, respectively. Compare with the as-cast Al-Si-Cu-Ni-Ce-Cr alloy, the value of tensile strength at room temperature and 300°C increases 74% and 19.3%, respectively.

Key wordsmetallic material    microstructure    mechanical property    heat-resistant aluminum    solid solution treatment    ageing treatment
收稿日期: 2018-12-06     
ZTFLH:  TG146.2  
基金资助:黑龙江省自然科学基金(Nos. ZD2016011);黑龙江省自然科学基金(Nos. E2018045)
作者简介: 赵天佑,男,1994年生,硕士生
ElementSiCuNiCrCeAl
Content126.01.30.50.5Bal.
表1  Al-Si-Cu-Ni-Ce-Cr合金的名义化学成分(质量分数,%)
图1  拉伸试样的示意图
图2  不同状态合金的金相组织
PointAlSiCuNiCeCr
A72.870.6413.9412.500.010.04
B68.426.0114.9510.520.040.05
C2.1597.400.450.000.000.00
D67.640.1117.0415.170.010.03
E42.1157.550.340.000.000.00
F77.300.6812.109.830.000.08
表2  图3和图5标识区域的EDS能谱分析(原子分数,%)
图3  铸态合金的扫描电镜照片
图4  不同状态合金的XRD衍射分析
图5  固溶处理合金的扫描电镜照片
图6  时效处理合金的扫描电镜照片
图7  铸态合金中Ce的分布
图8  固溶处理后Ce的分布
图9  时效处理后Ce的分布
图10  不同状态合金的室温和高温拉伸强度
图11  不同状态合金的室温拉伸断口形貌
图12  不同状态合金的高温拉伸断口形貌
[1] Jia X L, Zhu X R, Chen D H, et al. Research development of heat-resistant aluminium alloys [J]. Ordn. Mater. Sci. Eng., 2010, 32(2): 108
[1] 贾祥磊, 朱秀荣, 陈大辉等. 耐热铝合金研究进展 [J]. 兵器材料科学与工程, 2010, 32(2): 108)
[2] Shaji M C, Ravikumar K K, Ravi M, et al. Development of a high strength cast aluminium alloy for possible automotive applications [J]. Materials Science Forum, 2013, 765: 54
[3] Sun D Q, Chen H J, Wen Q C, et al. Development and application of heat-resistant Al alloy [J]. Nonferrous. Metal. Sci. Eng, 2018, 9(03): 65
[3] 孙德勤, 陈慧君, 文青草等. 耐热铝合金的发展与应用 [J]. 有色金属科学与工程, 2018, 9(03): 65
[4] Du Z Z, Rui X, Wang Q, et al. Research progress on surface modification of aluminum alloy automotive engine cylinder inner wall [J]. Mater. Rev., 2018, 32(S1): 336
[4] 杜忠泽, 芮 星, 王 强等. 铝合金汽车发动机缸体内壁表面改性的研究进展 [J]. 材料导报, 2018, 32(S1): 336
[5] Hirsch J. Aluminium in innovative light-weight car design [J]. Mater. Trans, 2011, 52(5): 818
[6] Yu F, Xu D F, Chen S Y, et al. Effect of Cu content on anisotropy of mechanical property of Al-Cu-Mn alloy [J]. Chin. J. Mater. Res, 2018, 32(11): 853
[6] 余 芳, 徐道芬, 陈送义等. Cu含量对Al-Cu-Mn合金力学性能各向异性的影响 [J]. 材料研究学报, 2018, 32(11): 853
[7] Wu S, Gong C Y, Lin Z F, et al. Heat treatment of Al-Si-Cu cast aluminum alloy [J]. Heat. Treat. Metals, 2017, 42(9): 57
[7] 吴 双, 龚成云, 林兆富等. Al-Si-Cu系铸造铝合金的热处理 [J]. 金属热处理, 2017, 42(9): 57)
[8] Miller W S, Zhuang L, Bottema J, et al. Recent development in aluminium alloys for the automotive industry [J]. Mater. Sci. Eng. A, 2000, 280(1): 37
[9] Nayak M S. Synthesis of Al-Si alloys and study of their mechanical properties [J]. J. Mater. Eng. Perform, 2015, 24(3): 1165
[10] Manasijevic S, Radisa R, Markovic S, et al. Thermal analysis and microscopic characterization of the piston alloy AlSi13Cu4Ni2Mg [J]. Intermetallics, 2011, 19(4): 486
[11] Qi G H, Liu X F, Meng Q G, et al. Relationships between mechanical properties and microstructures of binary Al-Si alloys [J]. Chin. J. Mater. Res., 2001, 15(6): 699
[11] 齐广慧, 刘相法, 孟庆格等. 二元Al-Si合金的力学性能与微结构的关系 [J]. 材料研究学报, 2001, 15(6): 699)
[12] Wang X F, Liu X F, Ding H M. Phases analysis of high properties Al-Si-Cu-Ni-Mg piston alloy [J]. Foundry, 2008, 57(2): 126
[12] 王宪芬, 刘相法, 丁海民. 高性能Al-Si-Cu-Ni-Mg活塞合金的相分析 [J]. 铸造, 2008, 57(2):126
[13] Li Y, Yang Y, Wu Y, et al. Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys [J]. Mater. Sci. Eng. A, 2010, 527(26): 7132
[14] Yang Y, Yu K, Li Y, et al. Evolution of nickel-rich phases in Al-Si-Cu-Ni-Mg piston alloys with different Cu additions [J]. Mater. Des, 2012, 33: 220
[15] Ibrahim A I, Elgallad E M, Samuel A M, et al. Effects of addition of transition metals on intermetallic precipitation in Al-2%Cu-1%Si-based alloys [J]. Int. J. Met, 2018, 12(3): 574
[16] Yang Y. Study on the evolution and collaborative strengthening mechanism of heat-resistant phases in multicomponent Al-Si alloy [D]. Jinan: Shandong University, 2013
[16] 杨 阳. Al-Si多元合金中耐热相演变行为与协同强化机制的研究 [D]. 济南:山东大学, 2013
[17] Hou L G, Cui H, Cai Y H, et al. Effect of (Mn+Cr) addition on the microstructure and thermal stability of spray-formed hypereutectic Al–Si alloys [J]. Mater. Sci. Eng. A, 2009, 527(1-2): 85
[18] Li Y, Yang Y, Wu Y, et al. Supportive strengthening role of Cr-rich phase on Al-Si multicomponent piston alloy at elevated temperature [J]. Mater. Sci. Eng. A, 2011, 528(13): 4427
[19] Yang Y, Zhong S Y, Chen Z, et al. Effect of Cr content and heat-treatment on the high temperature strength of eutectic Al-Si alloys [J]. J. Alloy. Compd, 2015, 647: 63
[20] Qian Z, Liu X F, Feng Z J, et al. High-Temperature strengthening effect of trace RE on industrial Al-Si piston alloy and its microstructural analysis [J]. Foundry, 2007, 56(2): 141
[20] 钱 钊, 刘相法, 冯增建等. 微量混合RE对Al-Si多元活塞合金的高温强化及组织分析 [J]. 铸造, 2007, 56(2): 141
[21] Qiang H, Xu Z P. Effect of heat treatment on microstructure and mechanical properties of aluminum alloy for piston [J]. Hot. Working. Technol, 2018, 47(02): 242
[21] 强 华, 徐尊平. 热处理对活塞用铝合金微观组织及力学性能的影响 [J]. 热加工工艺, 2018, 47(02): 242
[22] Sokolowski J H, Sun X C, Byczynski G, et al. The removal of copper-phase segregation and the subsequent improvement in mechanical properties of cast 319 aluminium alloys by a two-stage solution heat treatment [J]. J. Mater. Process. Technol, 1995, 53(1-2): 385
[23] Sui Y D. Study on the Microstructure and high temperature properties of Al-Si-Cu-Ni-Mg casting heat- resistant aluminum alloy [D]. Shanghai: Shanghai Jiao Tong University, 2016
[23] 隋育栋. Al-Si-Cu-Ni-Mg系铸造耐热铝合金组织及其高温性能研究 [D]. 上海: 上海交通大学, 2016
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.