Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 597-602    DOI: 10.11901/1005.3093.2018.637
  研究论文 本期目录 | 过刊浏览 |
纳米贝氏体/马氏体钢的热稳定性
冯凡凡,武会宾(),于新攀
北京科技大学 钢铁共性技术协同创新中心 北京 100083
Thermal Stability of Nanoscale Bainite/Martensite Steel
Fanfan FENG,Huibin WU(),Xinpan YU
Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

冯凡凡,武会宾,于新攀. 纳米贝氏体/马氏体钢的热稳定性[J]. 材料研究学报, 2019, 33(8): 597-602.
Fanfan FENG, Huibin WU, Xinpan YU. Thermal Stability of Nanoscale Bainite/Martensite Steel[J]. Chinese Journal of Materials Research, 2019, 33(8): 597-602.

全文: PDF(16795 KB)   HTML
摘要: 

将低温贝氏体相变前淬火得到由马氏体、贝氏体铁素体和残余奥氏体组成的纳米贝氏体钢,使用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)等手段观察在不同温度回火的纳米贝氏体钢的显微组织和硬度变化,研究了预相变马氏体对纳米贝氏体钢热稳定性的影响。结果表明:含有马氏体的纳米贝氏体钢在中低温(473~773 K)回火后其硬度比回火前的高,回火温度高于823 K其硬度迅速下降到266.2HV(923 K)。预形成的马氏体在473~573 K回火后向附近的残余奥氏体排碳,后者的碳含量提高到峰值1.52%,提高了残余奥氏体的热稳定性,延迟后者在高温时的分解,从而提高了纳米贝氏体钢的高温热稳定性;回火温度高于723 K则残余奥氏体分解成碳化物,贝氏体铁素体粗化、回复形成新的铁素体晶粒。

关键词 金属材料纳米贝氏体钢热稳定性马氏体硬度    
Abstract

The effect of the prior martensite on the thermal stability of the nano-bainitic steel was investigated. The nano-bainitic steel composed of prior martensite, nano-sized bainitic ferrite and retained austenite was obtained by quenching and followed by bainite transformation at low temperature. The microstructure and hardness variation were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and hardness tester etc. for the nano-bainite steels after tempering at different temperatures. Results show that after tempering at 473~773 K the hardness of the nano-bainite steel containing prior martensite is higher than that of the untampered ones. However, after tempering at temperatures above 823 K, its hardness decreased rapidly and which down to 266.2HV at 923 K. The carbon was discharged from prior martensite to the retained austenite when the steel was tempered at 473~573 K. The carbon content of the later increased to a peak value, i.e. 1.52%, which improved the thermal stability of retained austenite, and further delayed the decomposition of the later, thus improved the thermal stability of the nano-bainitic steel at high temperature. The retained austenite decomposed into carbides, and the bainitic ferrite coarsened and recovered, formed new ferrite grain when the tempering temperature exceeded 723 K.

Key wordsmetallic materials    nano-bainitic steel    thermal stability    prior martensite    hardness
收稿日期: 2018-11-01     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(No. 51774033)
作者简介: 冯凡凡,女,1993年生,硕士
图1  热处理工艺图
图2  不同回火温度试样钢的硬度
图3  试验钢回火前的SEM像和TEM像
图4  不同回火温度试验钢的显微组织
图5  回火温度不同的试验钢的TEM像
图6  回火温度不同的纳米贝氏体钢中贝氏体铁素体板的厚度
图7  回火温度不同的纳米贝氏体钢中残余奥氏体的含碳量
[1] Hu F, Zhou L X, Zhang Z C, et al. Current status and future trend of micro-and nano-structured ultra-high strength steels [J]. Materials China, 2015, 34(7-8): 595
[1] 胡 峰, 周立新, 张志成等. 微纳结构超高强度钢的现状与发展 [J]. 中国材料进展, 2015, 34(7-8): 595
[2] Zhang F C, Lv B, Zheng C L, et al. Microstructure of the worn surfaces of a bainitic steel railway crossing [J]. Wear, 2010, 268(11): 1243
[3] Sandvik B P J, Nevalainen H P. Structu re-property relationships in commercial low-alloy bainitic-austenitic steel with high strength, ductility, and toughness [J]. Metal Science Journal, 1981, 8(1): 213
[4] Bhadeshia H K D H. Nanostructured bainite [J]. Proceedings Mathematical Physical & Engineering Sciences, 2010, 466(2113): 3
[5] Hu F, Zhang G H, Wan X L, et al. Regulation of retained austenite in the micro/nano-structured bainitic steels and its influence on the stability [J]. Transactions of Materials and Heat Treatment, 2017, 38(4): 15
[5] 胡 锋, 张国宏, 万响亮等. 微纳结构贝氏体钢中残留奥氏体的调控及其对稳定性的影响 [J]. 材料热处理学报, 2017, 38(4): 15)
[6] Soliman M, Palkowski H. Development of the low temperature bainite [J]. Archives of Civil & Mechanical Engineering, 2016, 16(3): 403
[7] Hu H, Zurob H S, Xu G, et al. New insights to the effects of ausforming on the bainitic transformation [J]. Materials Science & Engineering A, 2015, 626: 34
[8] He J G, Zhao A M, Huang Y, et al. Effect of warm rolling process on phase transformation, microstructure and mechanical properties of nano-bainite steel [J]. Chinese Journal of Materials Research, 2015, 29(3): 207
[8] 何建国, 赵爱民, 黄 耀等. 温轧工艺对纳米贝氏体相变速率、组织和力学性能的影响 [J]. 材料研究学报, 2015, 29(3): 207
[9] Gong W, Tomota Y, Harjo S, et al. Effect of prior martensite on bainite transformation in nanobainite steel [J]. Acta Materialia, 2015, 85: 243
[10] Toji Y, Matsuda H, Raabe D. Effect of Si on the acceleration of bainite transformation by pre-existing martensite [J]. Acta Materialia, 2016, 116: 250
[11] Kang J, Zhang F C, Yang X W, et al. Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel [J]. Materials Science & Engineering A, 2017, 686: 150
[12] Dyson D J. Effect of alloying additions on the lattice parameter of austenite [J]. J. Iron Steel Inst., 1970, 208: 469
[13] Chang L C, Bhadeshia H K D H. Austenite films in bainitic microstructures [J]. Metal Science Journal, 1995, 11(9): 874
[14] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite [J]. Metal Science Journal, 2002, 18(3): 279
[15] Timokhina I B, Beladi H, Xiong X Y, et al. Nanoscale microstructural characterization of a nanobainitic steel [J]. Acta Materialia, 2011, 59(14): 5511
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.