|
|
一级应变硬化F316奥氏体不锈钢的高温蠕变性能 |
王冬颖1,王立毅2,冯鑫3,张滨3,雍兴平1,张广平2( ) |
1. 沈阳鼓风机集团核电泵业有限公司 沈阳 110869 2. 中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 3. 东北大学 材料各向异性与织构教育部重点实验室 材料科学与工程学院 沈阳 110819 |
|
Creep Properties of Pre-deformed F316 Stainless Steel |
Dongying WANG1,Liyi WANG2,Xin FENG3,Bin ZHANG3,Xingping YONG1,Guangping ZHANG2( ) |
1. Shenyang Blower Works Group Corporation, Shenyang 110869, China 2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3. Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China |
引用本文:
王冬颖,王立毅,冯鑫,张滨,雍兴平,张广平. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能[J]. 材料研究学报, 2019, 33(7): 497-504.
Dongying WANG,
Liyi WANG,
Xin FENG,
Bin ZHANG,
Xingping YONG,
Guangping ZHANG.
Creep Properties of Pre-deformed F316 Stainless Steel[J]. Chinese Journal of Materials Research, 2019, 33(7): 497-504.
[1] | Allen T, Busby J, Meyer M, et al. Materials challenges for nuclear systems [J]. Mater. Today, 2010, 13(12): 14 | [2] | Zinklea S J. Materials challenges in nuclear energy [J]. Acta Mater., 2013, 61(3): 735 | [3] | HelmutWolf, Mathew M D, Mannan S L, et al. Prediction of creep parameters of type 316 stainless steel under service conditions using the π-projection concept [J]. Mater. Sci. Eng., 1992, 159(2): 199 | [4] | Xu H. Analysis of high temperature creep relaxation of bolted joint [J]. Lubr. Eng., 2013 | [5] | Wright J K, Lillo T M, Wright R N, et al. Creep and creep-rupture of Alloy 617 [J]. Nucl. Eng. Des., 2018, 329: 142 | [6] | Yang W Y, Li Z W. Prediction of remaining life of 12Cr1MoV steel for main steam pipe material by θ method [J]. Acta Metall. Sin., 1999(7): 721 | [6] | (杨王玥, 李志文. θ法预测12Cr1MoV钢主蒸汽管道材料剩余寿命 [J]. 金属学报, 1999(7): 721) | [7] | An Z L, Xuan F Z, Tu S D. High temperature creep performance of 316L stainless steel for diffusion welded joint [J]. Pressure vessel Technology, 2011, 28(7): 6 | [7] | (安子良, 轩福贞, 涂善东. 316L不锈钢扩散焊接头高温蠕变性能 [J]. 压力容器, 2011, 28(7): 6) | [8] | Yoda Y, Toshinori Y, Nobuhiro T. Plastic deformation and creep damage evaluations of type 316 austenitic stainless steels by EBSD [J]. Mater. Charact. , 2010, 61(10): 913 | [9] | Kumar J G, Laha K. Small punch creep deformation and rupture behavior of 316L(N) stainless steel [J]. Mater. Sci. Eng., A, 2015, 641: 315 | [10] | Whittaker M T, Evans M, Wilshire B. Long-term creep data prediction for type 316H stainless steel [J]. Mater. Sci. Eng., A, 2012, 552: 145 | [11] | Turski M, Bouchard P J, Steuwer A, et al. Residual stress driven creep cracking in AISI Type 316 stainless steel [J]. Acta Mater., 2008, 56(14): 3598 | [12] | Lovell A J, Chin B A, Gilbert E R. In-reactor creep-rupture of 20-percent of cold-worked AISI 316 stainless steel [J]. J. Mater. Sci., 1981, 16(4): 870 | [13] | John Paul Foster, KermitBunde, Robert Gilbert E. Stress state dependence of transient irradiation creep in 20% cold worked 316 stainless steel [J]. J. Nucl. Mater., 1998, 257(2): 118 | [14] | John Paul Foster, KermitBunde, Grossbeck M L, et al. Temperature dependence of the 20% cold worked 316 stainless steel steady state irradiation creep rate [J]. J. Nucl. Mater., 1999, 270(3): 357 | [15] | People's Republic of China General Administration of quality supervision and quarantine, Metallic materials-uniaxial creep testing method in tension [S]. GB/T 2039-2012 | [15] | (中华人民共和国国家质量监督检疫总局, 金属材料单轴拉伸蠕变试验方法 [S]. GB/T 2039-2012) | [16] | Liu X Y, Pan Q L, Lu Z L, et al. Creep behavior of Al-Cu-Mg-Ag heat-resistant alloy at elevater temperature [J]. Acta Metall. Sin. 2011, 47(1): 53 | [17] | Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science [M]. Shanghai: Shang Hai Jiao Tong University Press, 2006 | [17] | (胡赓祥, 蔡珣, 戒咏华. 材料科学基础. 第2版 [M]. 上海: 上海交通大学出版社, 2006) | [18] | Zhao J, Gong J, Saboo A, et al. Dislocation-based modeling of long-term creep behaviors of Grade 91 steels [J]. Acta Mater., 2018 | [19] | Wang S J, Jozaghi T., Karaman I., et al. Hierarchical evolution and thermal stability of microstructure with deformation twins in 316 stainless steel [J]. Mater. Sci. Eng., A, 2017, 694: 121 | [20] | Wirmark G, Nilsson J O, Dunlop G L. Sliding at twin boundaries during high-temperature creep [J]. Philos. Mag. A, 1981, 43(1): 93 | [21] | Wang L Y, Song X M, Luo X M, et al. 3D X-ray tomography characterization of creep cavities in small-punch tested 316 stainless steels [J]. Mater. Sci. Eng., A, 2018, 724: 69 | [22] | National Research Institute for Metals (NRIM) Creep Data Sheet, No.14B for 18Cr-12Ni-Mo stainless steel plates [DB/OL]. JIS SUS 316-HP. 1988 | [23] | National Research Institute for Metals (NRIM) Creep Data Sheet, No.15B for 18Cr-12Ni-Mo stainless steel bars [DB/OL]. JIS SUS 316-B. 1988 | [24] | Meyers M A, Chawla K K. Mechanical behavior of materials [M]. 2009: Chambridge University Press. | [25] | Larson F R. A time-temperature relationship for rupture and creep stresses [J]. Transactions of American Society of Mechanical Engineers, 1952, 74: 765 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|