Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (2): 117-123    DOI: 10.11901/1005.3093.2018.548
  本期目录 | 过刊浏览 |
3D打印医用钛合金的抗菌性能和体外生物相容性
李改明1,2,4,5,刘思雨1,2,4,5,战德松1,2,4,5(),刘蕊3,任玲3,杨柯3,王敬人1,2,4,5,王强1,2,4,5
1. 中国医科大学附属口腔医学院材料教研室 沈阳 110002
2. 辽宁省口腔医院研究所 沈阳 110002
3. 中国科学院金属研究所 沈阳 110819
4. 辽宁省口腔疾病重点实验室 沈阳 110002
5. 辽宁省口腔疾病转化医学研究中心 沈阳 110002
Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys
Gaiming LI1,2,4,5,Siyu LIU1,2,4,5,Desong ZHAN1,2,4,5(),Rui LIU3,Ling REN3,Ke YANG3,Jingren WANG1,2,4,5,Qiang WANG1,2,4,5
1. Department of Dental Material, School of Stomatology, China Medical University, Shenyang 110002, China
2. Liaoning Institute of Dental Research, Shenyang 110002, China
3. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
4. Liaoning Province Oral Diseases Key Laboratory, Shenyang 110002, China
5. Liaoning Province Oral Diseases Translation Medcicne Research Center, Shenyang 110002, China
引用本文:

李改明,刘思雨,战德松,刘蕊,任玲,杨柯,王敬人,王强. 3D打印医用钛合金的抗菌性能和体外生物相容性[J]. 材料研究学报, 2019, 33(2): 117-123.
Gaiming LI, Siyu LIU, Desong ZHAN, Rui LIU, Ling REN, Ke YANG, Jingren WANG, Qiang WANG. Antibacterial Properties and Biocompatibility of SLM-fabricated Medical Titanium Alloys[J]. Chinese Journal of Materials Research, 2019, 33(2): 117-123.

全文: PDF(10477 KB)   HTML
摘要: 

应用选择性激光熔融技术(SLM)制备出3D打印医用钛合金Ti-6Al-4V和Ti-6Al-4V-5Cu,用平板共培养法研究测定其抗菌性能,用CCK8细胞增殖测定法、鬼笔环肽细胞骨架染色法和Annexin-V/PI流式细胞术研究了这种合金的抗菌性能和对小鼠胚胎成骨前体细胞(MC3T3-E1)的体外生物相容性影响。结果表明,3D打印Ti-6Al-4V-5Cu合金具有较高的抗菌性能,对金黄色葡萄球菌的抗菌率达到(57.03±1.55)%。在CCK8细胞增殖毒性测定、细胞骨架鬼笔环肽染色实验和Annexin-V/PI双标记法流式分析三种研究中Ti-6Al-4V-5Cu表现的优越,具有更好的体外生物相容性。

关键词 金属材料3D打印SLMTi-6Al-4V-5Cu抗菌生物相容性    
Abstract

The 3D printing medical titanium alloys Ti-6Al-4V and Ti-6Al-4V-5Cu were prepared by selective laser melting technology (SLM), and their antibacterial properties were assessed by plate co-culture method. The in vitro biocompatibility with the mouse embryonic osteogenic precursor cells (MC3T3-E1) of the prepared alloys was systematically investigated by means of methods of CCK8 cell proliferation assay, phalloidin cytoskeleton staining and Annexin-V/PI flow cytometry. The results show that the 3D printing Ti-6Al-4V-5Cu alloy has high antibacterial property and the antibacterial rate against Staphylococcus aureus is 57.03%. The alloy Ti-6Al-4V-5Cu performed well with better in vitro biocompatibility during the three assessments,namely,CCK8 cell proliferation toxicity assay, cytoskeleton phalloidin staining experiment and Annexin-V/PI double labeling flow analysis.

Key wordsmetallic materials    3D printing    SLM    Ti-6Al-4V-5Cu    antibacterial    biocompatibility
收稿日期: 2018-09-10     
ZTFLH:  R318  
基金资助:国家重点研发计划(2018YFC1106601);国家自然科学基金(51631009)
作者简介: 李改明,女,1990年生,硕士生
AlloyAlVCuFeCNOHTi
Ti-6Al-4V6.013.970.010.020.010.0010.030.001Bal.
Ti-6Al-4V-5Cu6.063.754.850.060.010.0020.050.001Bal.
表1  两种钛合金的成分
CTGRGR/%Toxicity
0≥100No
175~99No
250~74Slightly
325~49Midrange
40~24Obvious
表2  细胞毒性分级标准和评定结果
图1  三种钛合金对金黄色葡萄球菌的作用
GroupS. aureus
Colony meanSterilizing rate
TC4-5Cu113±4.08(57.03±1.55)%
TC4237±11.91-
tc4263±6.05-
表3  不同种类钛合金对金黄色葡萄球菌的杀菌率(n=4)
图2  CCK-8细胞增值分析测得的MC3T3-E1细胞的OD值
Co-culture time/dRGR/%
TC4-5CuTC4tc4
199.4±1.5889.3±4.21100±2.16
3110±6.79101±15.33100±4.79
7103.6±10.1998.9±8.30100±5.49
表4  三种钛合金对 MC3T3-E1 细胞的相对增值率
图3  MC3T3-E1 细胞在三种钛合金表面作用下培养4 h和24 h的罗丹明鬼笔环肽骨架染色
图4  MC3T3-E1 细胞在三种钛合金表面培养72 h流式散点图和柱状图统计分析
[1] Yan T F. The current situation and developmental trend of biomedical materials [J]. China Med. Dev. Inf., 2006, 12(5): 1
[1] (奚廷斐. 生物医用材料现状和发展趋势 [J]. 中国医疗器械信息, 2006, 12(5): 1)
[2] Li Y, Liu L N, Wan P, et al. Biodegradable Mg-Cu alloy implants with antibacterial activity for the treatment of osteomyelitis: In vitro and in vivo evaluations [J]. Biomaterials, 2016, 106: 250
[3] Mombelli A, Müller N, Cionca N. The epidemiology of peri-implantitis [J]. Clin. Oral. Implants Res., 2012, 23 Suppl 6: 67
[4] Liu R, Memarzadeh K, Chang B, et al. Antibacterial effect of copper-bearing titanium alloy (Ti-Cu) against Streptococcus mutans and Porphyromonas gingivalis [J]. Sci. Rep., 2016, 6: 29985
[5] Cacciotti I, Bianco A. High thermally stable Mg-substituted tricalcium phosphate via precipitation [J]. Ceram. Int., 2011, 37: 127
[6] Kalita S J, Bhatt H A. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization [J]. Mater. Sci. Eng., 2007, 27C: 837
[7] Wu C T, Ramaswamy Y, Kwik D, et al. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties [J]. Biomaterials, 2007, 28: 3171
[8] Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment [J]. FEMS Microbiol. Rev., 2003, 27: 197
[9] Ma Z, Ren L, Yang K, et al. Effect of heat treatment on Cu distribution, antibacterial performance and cytotoxicity of Ti-6Al-4V-5Cu alloy [J]. J. Mater. Sci. Technol., 2015, 31: 723
[10] Ren L, Li M, Zhang Y, et al. Antibacterial properties of Ti-6Al-4V-xCu alloys [J]. J. Mater. Sci. Technol., 2014, 30: 699
[11] Burghardt I, Lüthen F, Prinz C, et al. A dual function of copper in designing regenerative implants [J]. Biomaterials, 2015, 44: 36
[12] Zhang B, Huang Q R, Gao Y, et al. Preliminary study on some properties of Co-Cr dental alloy formed by selective laser melting technique [J]. Wuhan Univ. J. Technol. Mater., 2012, 27: 665
[13] Huang W Y, Jiang M Z, Zhan D S. Single crown restoration with 3 shape Trios scanner and 3D printing technology [J]. Chin. J. Pract. Stomatol., 2017, 10: 279
[13] (黄婉怡, 姜慕舟, 战德松. 口内扫描仪结合3D打印技术单冠固定修复临床研究 [J]. 中国实用口腔科杂志, 2017, 10: 279
[14] Habijan T, Haberland C, Meier H, et al. The biocompatibility of dense and porous Nickel-Titanium produced by selective laser melting [J]. Mater. Sci. Eng., 2013, 33C: 419
[15] Figliuzzi M, Mangano F, Mangano C. A novel root analogue dental implant using CT scan and CAD/CAM: selective laser melting technology [J]. Int. J. Oral Maxill. Surg., 2012, 41: 858
[16] Zhao B, Xu D K, Sun Z Q, et al. In vitro biocompatibility and antibacterial property of a novel magnesium phosphate whisker [J]. Chin. J. Mater. Res., 2016, 30: 220
[16] (赵 冰, 徐大可, 孙子晴等. 新型磷镁晶须的体外生物相容性和抗菌性能 [J]. 材料研究学报, 2016, 30: 220
[17] Foreman A, Boase S, Psaltis A, et al. Role of bacterial and fungal biofilms in chronic rhinosinusitis [J]. Curr. Allergy Asthma Rep., 2012, 12: 127
[18] Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment [J]. FEMS Microbiol. Rev., 2003, 27: 197
[19] Kang M K, Moon S K, Kwon J S, et al. Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys [J]. Mater. Res. Bull., 2012, 47: 2952
[20] Mei S L, Wang H Y, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes [J]. Biomaterials, 2014, 35: 4255
[21] Zheng Y H, Li J B, Liu X Y, et al. Antimicrobial and osteogenic effect of Ag-implanted titanium with a nanostructured surface [J]. Int J Nanomedicine, 2012, 7: 875
[22] Holmes C J, Faict D. Peritoneal dialysis solution biocompatibility: definitions and evaluation strategies [J]. Kidney Int., 2003, 64(Suppl. 88): S50
[23] Scheiber I F, Mercer J F B, Dringen R. Metabolism and functions of copper in brain [J]. Progr. Neurobiol., 2014, 116: 33
[24] Szymański P, Fraczek T, Markowicz M, et al. Development of copper based drugs, radiopharmaceuticals and medical materials [J]. Biometals, 2012, 25: 1089
[25] Qi X H, Jiang H W. Matrix vesicles and their relationship with cytoskeleton-associated proteins [J]. Int. J. Stomatol., 2018, 45: 204
[25] (冼雪红, 蒋宏伟. 基质小泡及其与细胞骨架蛋白的关系 [J]. 国际口腔医学杂志, 2018, 45: 204)
[26] Yu T H, Zhang N, Zhan D S. Evaluation of biocompatibilities of three dental alloys by flow cytometry [J]. Chin. J. Mater. Res., 2013, 27: 652
[26] (毓天昊, 张 宁, 战德松. 使用流式细胞仪评价3种牙科合金材料的生物相容性 [J]. 材料研究学报, 2013, 27: 652)
[27] Jin S J, Qi X, Wang T M, et al. In vitro study of stimulation effect on endothelialization by a copper bearing cobalt alloy [J]. Biomed. J. Mater. Res., 2018, 106A: 561
[28] Ren L, Wong H M, Yan C H, et al. Osteogenic ability of Cu-bearing stainless steel [J]. Biomed. J. Mater. Res, 2015, 103B: 1433
[29] Kemp M G. Crosstalk between apoptosis and autophagy: environmental Genotoxins, infection, and innate immunity [J]. J. Cell Death, 2017, 10, doi: 10.1177/1179670716685085.
[30] Jivan R, Damelin L H, Birkhead M, et al. Disulfiram/copper-disulfiram damages multiple protein degradation and turnover pathways and cytotoxicity is enhanced by metformin in oesophageal squamous cell carcinoma cell lines [J]. J Cell Biochem, 2015, 116: 2334
[31] Wu X, Xue X, Wang W J, et al. Suppressing autophagy enhances disulfiram/copper-induced apoptosis in non-small cell lung cancer [J]. Eur. J. Pharmacol., 2018, 827: 1
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.