|
|
挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理 |
叶拓1,2,3,吴远志1,3( ),刘安民1,3,唐徐2,李落星2 |
1. 湖南工学院汽车零部件技术研究院 衡阳 421002 2. 湖南大学汽车车身先进设计与制造国家重点实验室 长沙 410082 3. 湖南工学院机械工程学院 衡阳 421002 |
|
Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading |
Tuo YE1,2,3,Yuanzhi WU1,3( ),Anmin LIU1,3,Xu TANG2,Luoxing LI2 |
1. Research Institute of Automobile Parts Technology, Hunan Institute of Technology, Hengyang 421002, China 2. State Key Laboratory Design and Manufacture for Vehicle Body, Hunan University, Changsha 410082, China 3. School of Mechanical and Engineering, Hunan University, Changsha 421002, China |
引用本文:
叶拓,吴远志,刘安民,唐徐,李落星. 挤压态6013-T4铝合金在动态冲击载荷下的变形行为及其微观机理[J]. 材料研究学报, 2019, 33(2): 109-116.
Tuo YE,
Yuanzhi WU,
Anmin LIU,
Xu TANG,
Luoxing LI.
Deformation Behavior and Micro-mechanism of As-extruded 6013-T4 Al Alloy under Dynamic Impact Loading[J]. Chinese Journal of Materials Research, 2019, 33(2): 109-116.
[1] | Zhang J, Ma M, Shen F, et al. Influence of deformation and annealing on electrical conductivity, mechanical properties and texture of Al-Mg-Si alloy cables [J]. Mater. Sci. Eng. A, 2018, 710: 27 | [2] | Liu M P, Wei J T, Li Y C, et al. Dynamic aging behavior and mechanical properties of an Al-Mg-Si aluminum alloy induced by equal channel angular pressing [J]. Chin. J. Mater. Res., 2016, 30(10): 721 | [2] | (刘满平, 韦江涛, 李毅超等. 等通道转角挤压 Al-Mg-Si 铝合金的动态时效特性和力学性能 [J]. 材料研究学报, 2016, 30(10): 721) | [3] | Li H, Yan Z, Cao L. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body [J]. Mater. Sci. Eng. A, 2018, 728: 88 | [4] | Deng Y L, Wang Y F, Lin H Q, et al. Effect of extrusion temperature on strength and fracture toughness of an Al-Zn-Mg Alloy [J]. Chin. J. Mater. Res., 2016, 30(2): 87 | [4] | (邓运来, 王亚风, 林化强等. 挤压温度对 Al-Zn-Mg 合金力学性能的影响 [J]. 材料研究学报, 2016, 30(2): 87) | [5] | Liu C Y, Qu B, Xue P, et al. Fabrication of large-bulk ultrafine grained 6061 aluminum alloy by rolling and low-heat-input friction stir welding [J]. Mater. J. Sci. Technol., 2018, 34(1): 112 | [6] | Xiao W C, Wang B Y, Kang Y, et al. Deep drawing of aluminum alloy 7075 using hot stamping [J]. Rare. Met., 2017, 36(6): 485 | [7] | Afifi M A, Pereira P H R, Wang Y C, et al. Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al-Zn-Mg alloy [J]. Mater. Sci. Eng., A, 2017, 684: 617 | [8] | Huang Y, Deng Y L, Chen L, et al. Microstructure, texture and property of extruded 7N01 aluminum alloy plates [J]. Chin. J. Mater. Res., 2014, 28(7): 541 | [8] | (黄 英, 邓运来, 陈 龙等. 7N01 铝合金挤压板的微结构, 织构和性能 [J]. 材料研究学报, 2014, 28(7): 541) | [9] | Li D, Zhang D, Liu S, et al. Dynamic recrystallization behavior of 7085 aluminum alloy during hot deformation [J]. Trans. Nonferrous Met. Soc. China., 2016, 26(6): 1491 | [10] | Dong Y, Zhang C, Zhao G, et al. Constitutive equation and processing maps of an Al-Mg-Si aluminum alloy: Determination and application in simulating extrusion process of complex profiles [J]. Mater. Des., 2016, 92: 983 | [11] | Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055Al-alloy [J]. Chin. J. Mater. Res., 2018, 32(2): 112 | [11] | (滕广标, 刘崇宇, 李 剑. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 112) | [12] | Cheng T C, Lee R S. The influence of grain size and strain rate effects on formability of aluminium alloy sheet at high-speed forming [J]. J. Mater. Process. Technol., 2018, 253: 134 | [13] | Huang L, Luo W Y, Liu X L, et al. Research on plastic flow behaviors for hole flanging part of aluminum alloy with large complicated profiles by electromagnetic forming [J]. J. Mater. Eng., 2013, 49(24): 24 | [13] | (黄 亮, 骆文勇, 刘贤龙等. 大型复杂型面铝合金翻边件电磁成形塑性流动行为研究 [J]. 机械工程学报, 2013, 49(24): 24) | [14] | Thi-Hoa P, Thi-Bich M, Van-Canh T, et al. A study on the cutting force and chip shrinkage coefficient in high-speed milling of A6061 aluminum alloy [J]. Int. Adv. J. Manuf. Tech., 2017: 1 | [15] | Olasumboye A T, Owolabi G M, Odeshi A G, et al. Dynamic behavior of AA2519-T8 aluminum alloy under high strain rate loading in compression [J]. Dyn. J. Behav. Mater., 2018, 4(2): 151 | [16] | Xiao G, Li L Y, Liu Z W, et al. Hot deformation behavior and processing map of 6013 aluminum alloy [J]. Trans. Mater. Heat. Treat., 2014, (10): 23 | [16] | (肖 罡, 李落星, 刘志文等. 6013铝合金的热变形行为及热加工图 [J]. 材料热处理学报, 2014, (10): 23) | [17] | Xiao G, Yang Q, Li L, et al. Constitutive analysis of 6013 aluminum alloy in hot plane strain compression process considering deformation heating integrated with heat transfer [J]. Met. Mater. Int., 2016, 22(1): 58 | [18] | Zhao Y, Zhou L, Wang Q, et al. Defects and tensile properties of 6013 aluminum alloy T-joints by friction stir welding [J]. Mater. Des., 2014, 57: 146 | [19] | Hirth G, Kohlstedt D L. The stress dependence of olivine creep rate: Implications for extrapolation of lab data and interpretation of recrystallized grain size [J]. Earth. Planet. Sci. Lett., 2015, 418: 20 | [20] | Chen J Z, Zhen L, Dai S L, et al. Effects of grain shape and texture on the through-thickness yield strength of AA 7055 aluminum alloy plate [J]. Rare. Met. Mater. Eng., 2008, 37(11): 1966 | [20] | (陈军洲, 甄 良, 戴圣龙等. 晶粒形貌及织构对 AA7055 铝合金板材不同厚度层屈服强度的影响 [J]. 稀有金属材料与工程, 2008, 37(11): 1966) | [21] | Li H, Jiang Z, Wei D, et al. Surface asperity evolution and microstructure analysis of Al 6061T5 alloy in a quasi-static cold uniaxial planar compression (CUPC) [J]. Appl. Surf. Sci., 2015, 347: 19 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|