|
|
晶粒度对K492高温合金疲劳性能的影响 |
刘志远1, 刘勇军1, 刘鹏2,3, 崔传勇2( ) |
1 中国航发湖南动力机械研究所 株洲 412002 2 中国科学院金属研究所 沈阳 110016 3 中国科学技术大学材料科学与工程学院 合肥 230026 |
|
Effects of Grain Size on Fatigue Properties of K492 Superalloy |
Zhiyuan LIU1, Yongjun LIU1, Peng LIU2,3, Chuanyong CUI2( ) |
1 China Aviation Development Hunan Institute of Power Machinery, Zhuzhou 412002, China 2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3 School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China |
引用本文:
刘志远, 刘勇军, 刘鹏, 崔传勇. 晶粒度对K492高温合金疲劳性能的影响[J]. 材料研究学报, 2018, 32(11): 834-842.
Zhiyuan LIU,
Yongjun LIU,
Peng LIU,
Chuanyong CUI.
Effects of Grain Size on Fatigue Properties of K492 Superalloy[J]. Chinese Journal of Materials Research, 2018, 32(11): 834-842.
[1] | Almroth P, Hasselqvist M, Sjostrom S.Modeling of the high temperature behaviour of IN792 in gas turbine hot parts[J]. Computational Materials Science, 2002, 25(3): 305 | [2] | Yang J X, Zheng Q, Zhang H Y.Effects of heat treatments on the microstructure of IN792 alloy[J]. Materials Science and Engineering: A, 2010, 527(4-5): 1016 | [3] | Kanesund J, Moverare J, Johansson S.The deformation and damage mechanisms during thermomechanical fatigue (TMF) in IN792[J]. Procedia Engineering, 2011, 10: 189 | [4] | Soboyejo A B O, Mercer C, Soboyejo W O. Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy[J]. Materials Science and Engineering: A, 1999, 270: 308 | [5] | Liu X L, Sun C Q, Zhou Y T.Effects of microstructure and stress ratio on high-cycle and very-high-cycle fatigue behavior of ti-6a1-4v alloy[J]. Acta Metallurgica Sinica, 2016, 52(8): 623(刘小龙, 孙成奇, 周砚田. 微结构和应力比对Ti-6A1-4V高周和超高周疲劳行为的影响[J]. 金属学报, 2016, 52(8): 623) | [6] | Xie J, Yu J J, Sun X F.High-cycle fatigue behavior of K416B Ni-based casting superalloy at 700℃[J]. Acta Metallurgica Sinica, 2016, 52(3): 257(谢君, 于金江, 孙晓峰. K416B镍基铸造高温合金的700℃高周疲劳行为[J]. 金属学报, 2016, 52(3): 257) | [7] | Teng Y F, Li Y J, Feng X H.Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metallurgica Sinica, 2015, 51(7): 844(滕跃飞, 李应举, 冯小辉. 脉冲磁场作用下矩形截面宽厚比对K4169高温合金晶粒细化的影响[J]. 金属学报, 2015, 51(7): 844) | [8] | Kim S H, Lee J U, Kim Y J.Accelerated precipitation behavior of cast Mg-Al-Zn alloy by grain refinement[J]. Journal of Materials Science and Technology, 2018, 2(34): 265 | [9] | Yang J X, Sun Y, Jin T.Microstructure and mechanical properties of a Ni-based superalloy with refined grains[J]. Acta Metallurgica Sinica, 2014, 50(7): 839(杨金侠, 孙元, 金涛. 一种细晶铸造镍基高温合金的组织与力学性能, 金属学报, 2014, 50(7): 839) | [10] | Hou F, Li J K, Xie S X.Very high cycle fatigue properties of CrMoW rotor steelat high-temperature[J]. Chinese Journal of Materials Research, 2016, 30(7): 481(侯方, 李久楷, 谢少雄. CrMoW转子钢的高温超高周疲劳性能[J]. 材料研究学报, 2016, 30(7): 481) | [11] | Zhang Y J, Hui W J, Xiang J Z.Effect of grain size on ultra-high-cyclefatigue properties of 42CrMoVNb steel[J]. Acta Metallurgica Sinica, 2009, 45(7): 880(张永健, 惠卫军, 项金钟. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45(7): 880) | [12] | Liu L, Huang T W, Xiong Y H.Grain refinement of superalloy K4169 by addition of refiners: cast structure and refinement mechanisms[J]. Materials Science and Engineering: A, 2005, 394(1): 1 | [13] | Wei C N, H. Y. Bor, C. Y. Ma. A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties[J]. Materials Chemistry and Physics, 2003, 80(1): 89 | [14] | Kunz L, Luká? P, Kone?ná R.Casting defects and high temperature fatigue life of IN 713LC superalloy[J]. International Journal of Fatigue, 2012, 41(0): 47 | [15] | Kunz L, Luká? P, Kone?ná R.High-cycle fatigue of Ni-base superalloy Inconel 713LC[J]. International Journal of Fatigue, 2010, 32(6): 908 | [16] | Kunz L, Luká? P, Kone?ná R.Initiation and propagation of fatigue cracks in cast IN 713LC superalloy[J]. Engineering Fracture Mechanics, 2010, 77(11): 2008 | [17] | Shi Z X, Li J R, Liu S Z.High cycle fatigue behavior of the second generation single crystal superalloy DD6[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(5): 998 | [18] | Chu Z K, Yu J J, Sun X F.High cycle fatigue behavior of a directionally solidified Ni-base superalloy DZ951[J]. Materials Science and Engineering: A, 2008, 496(1-2): 355 | [19] | Liu Y, Yu J J, Xu Y B. High cycle fatigue behavior of a single crystal superalloy at elevated temperatures [J]. Materials Science and Engineering: A , 2007,454-455: 357 | [20] | Cui Y X, Wang C L.Metal Fracture Analysis [M]. Harbin:Harbin Institute of Technology Press, 1998(崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998) | [21] | Cai Q K.Metal Fatigue Fracture Theory [M]. Shenyang: Northeastern Institute of Technology Press, 1989(才庆魁. 金属疲劳断裂理论 [M]. 沈阳: 东北工学院出版社, 1989) | [22] | Chen G L.Superalloys [M]. Beijing: Metallurgical Industry Press, 1988(陈国良. 高温合金学[M]. 北京: 冶金工业出版社, 1988) | [23] | Pang H T, Reed P A S. Fatigue crack initiation and short crack growth in nickel-base turbine disc alloys—the effects of microstructure and operating parameters[J]. International Journal of Fatigue, 2003, 25(9): 1089 | [24] | Yang A M.Study of Structure Refinement and Optimization of Mechanical Proprieties for Superalloy K4169 [D]. Xian: Northwestern Polytechnical University, 2002(杨爱民. K4169高温合金组织细化及性能优化研究 [D]. 西安: 西北工业大学, 2002) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|