|
|
含有Cu、Mo、Sn的高强度蠕墨铸铁的蠕变行为 |
武岳,李建平( ),杨忠,郭永春,马志军,梁民宪,杨通,陶栋 |
西安工业大学材料与化工学院 陕西省镁铝轻合金及复合材料工程研究中心 西安 710021 |
|
Creep Behavior of a High Strength Compacted Graphite Cast Iron |
Yue WU,Jianping LI( ),Zhong YANG,Yongchun GUO,Zhijun MA,Minxian LIANG,Tong YANG,Dong TAO |
Shaanxi Province Engineering Research Centre of Aluminium/Magniesum Light Alloy and Composites, School of Materials and Chemical Engineering,Xi'an Technological University, Xi'an 710021, China |
引用本文:
武岳,李建平,杨忠,郭永春,马志军,梁民宪,杨通,陶栋. 含有Cu、Mo、Sn的高强度蠕墨铸铁的蠕变行为[J]. 材料研究学报, 2019, 33(1): 43-52.
Yue WU,
Jianping LI,
Zhong YANG,
Yongchun GUO,
Zhijun MA,
Minxian LIANG,
Tong YANG,
Dong TAO.
Creep Behavior of a High Strength Compacted Graphite Cast Iron[J]. Chinese Journal of Materials Research, 2019, 33(1): 43-52.
1 | YangT, GuoY C, LiJ P, et al. Microstructure and mechanical properties of thin-section compacted graphite cast iron [J]. 2008, 57(3): 270 | 1 | 杨通, 郭永春, 李建平等. 薄壁蠕墨铸铁的组织与性能研究 [J]. 铸造, 2008, (03): 270) | 2 | YangZ, TaoD, GuoY C, et al. Effect of multi-component micro-alloying on microstructure and properties of compacted graphite cast iron [J]. Foundry, 2014, (02): 115 | 2 | 杨忠, 陶栋, 郭永春等. 多元低合金化对蠕墨铸铁组织与性能的影响 [J]. 铸造, 2014, (02): 115) | 3 | MoonesanM, HonarbakhshRaoufA, MadahF, et al. Effect of alloying elements on thermal shock resistance of gray cast iron [J]. Journal of Alloys and Compounds, 2012, 520(Supplement C):226 | 4 | Imasogie, B I Microstructural features and mechanical properties of compacted graphite iron treated with calcium-magnesium based master alloy [J]. Journal of Materials Engineering and Performance,2003, 12(3): 239 | 5 | GhodratS, JanssenM, KestensL A I. et al. Volume expansion of compacted graphite iron induced by pearlite decomposition and the effect of oxidation at elevated temperature [J]. Oxidation of Metals, 2013, 80(1-2): 161 | 6 | DawsonS. Compacted graphite iron-a material solution for modern diesel engine cylinder blocks and heads [J]. Foundry Technology, 2009, (04): 455 | 6 | 史蒂夫·道森. 蠕墨铸铁—现代柴油发动机缸体和缸盖的材料 [J]. 铸造技术, 2009, (04): 455) | 7 | YuanY L, HeG Q, FanK L, et al. Low cycle fatigue behavior of gray cast iron used for engine [J]. Chinese journal of materials research, 2013, (05): 469 | 8 | SelinM. Tensile and thermal properties in compacted graphite irons at elevated temperatures [J]. Metallurgical and Materials Transactions A, 2010, 41(12): 3100 | 9 | QiuY, PangJ C, YangE N, et al. Transition of tensile strength and damaging mechanisms of compacted graphite iron with temperature [J]. Materials Science and Engineering: A, 2016, 677(Supplement C):290 | 10 | QiuY, PangJ C, LiS X, et al. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron [J]. Materials Science and Engineering: A, 2016, 664(Supplement C):75 | 11 | MaZ J, TaoD, YangZ, et al. The effect of vermicularity on the thermal conductivity of vermicular graphite cast iron [J]. Materials and Design, 2016, 93: 48 | 12 | ZhangJ S. High temperature deformation and fracture of material [M]. Beijing: Science Press, 2007: 3 | 12 | 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 3) | 13 | TuS D, XuanF Z, WangW Z. Some critical issues in creep and fracture assessment at high temperature [J]. Acta metallurgica sinica, 2009, (07): 781 | 13 | 涂善东, 轩福贞, 王卫泽. 高温蠕变与断裂评价的若干关键问题 [J]. 金属学报, 2009, (07): 781) | 14 | NortonF H. The Creep of Steel at High Temperatures [M]. McGraw-Hill, London, 1929 | 15 | BaileyR W. The utilization of creep test data in engineering design [J]. Proceedings of the Institution of Mechanical Engineers, 1935, 131: 131 | 16 | EvansR W, WilshireB. Creep of Metals and Alloys [M]. The Institute of Metals, London, 1985 | 17 | KachanovL M. On Creep Rupture Time [A]. Proceeding of the Academy Sciences of USSR, 1958, 8, p 26-31 | 18 | RabotnovY N, LeckieF A, PragerW. Creep Problems in Structural Members [J]. Journal of Applied Mechanics, 1969, 37(1): 249 | 19 | WuX J, QuanG, MacNeilR, et al. Thermomechanical fatigue of ductile cast iron and its life prediction [J]. Metallurgical and Materials Transactions A, 2015, 46: 2530 | 20 | WuX J. A model of nonlinear fatigue-creep (dwell) interactions [J]. Journal of Engineering for Gas Turbines and Power, 2009, 131: 032101-1-032101-6 | 21 | WuX J, QuanG, MacNeilR, et al. Failure mechanisms and damage model of ductile cast iron under low-cycle fatigue conditions [J]. Metallurgical and Materials Transactions A, 2014, 45(11): 5085 | 22 | WuX J, WilliamsS, GongD. A true-stress creep model based on deformation mechanisms for polycrystalline materials [J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2255 | 23 | JingG X, ZhangS Y, FuW Q, et al. Loading characteristics of cast iron cylinder head for high-strengthened diesel engine [J]. Vehicle Engine, 2017, (01): 42 | 23 | 景国玺, 张树勇, 付文清等. 高强化柴油机铸铁缸盖承载特性研究 [J]. 车用发动机, 2017, (01): 42) | 24 | ChenI W. Cavity growth on a sliding grain boundary [J]. Metallurgical Transactions A, 1983, 14(11): 2289 | 25 | FrostH J, AshbyM F. Deformation Mechanism Maps [M]. Pergamon Press, 1982 | 26 | WuY, LiJ P, ZhangY J, et al. Effect of heat treatment on mechanical properties and thermal conductivity of RuT300 vermicular graphite cast iron [J]. Transactions of materials and heat treatment, 2017, (02): 143 | 26 | 武岳, 李建平, 张延京等. 热处理工艺对RuT300蠕墨铸铁力学性能与导热性能的影响 [J]. 材料热处理学报, 2017, (02): 143) |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|