Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (1): 43-52    DOI: 10.11901/1005.3093.2017.778
  研究论文 本期目录 | 过刊浏览 |
含有Cu、Mo、Sn的高强度蠕墨铸铁的蠕变行为
武岳,李建平(),杨忠,郭永春,马志军,梁民宪,杨通,陶栋
西安工业大学材料与化工学院 陕西省镁铝轻合金及复合材料工程研究中心 西安 710021
Creep Behavior of a High Strength Compacted Graphite Cast Iron
Yue WU,Jianping LI(),Zhong YANG,Yongchun GUO,Zhijun MA,Minxian LIANG,Tong YANG,Dong TAO
Shaanxi Province Engineering Research Centre of Aluminium/Magniesum Light Alloy and Composites, School of Materials and Chemical Engineering,Xi'an Technological University, Xi'an 710021, China
引用本文:

武岳,李建平,杨忠,郭永春,马志军,梁民宪,杨通,陶栋. 含有Cu、Mo、Sn的高强度蠕墨铸铁的蠕变行为[J]. 材料研究学报, 2019, 33(1): 43-52.
Yue WU, Jianping LI, Zhong YANG, Yongchun GUO, Zhijun MA, Minxian LIANG, Tong YANG, Dong TAO. Creep Behavior of a High Strength Compacted Graphite Cast Iron[J]. Chinese Journal of Materials Research, 2019, 33(1): 43-52.

全文: PDF(15334 KB)   HTML
摘要: 

研究了一种含有Cu、Mo、Sn的高强度蠕墨铸铁在623~823 K、40~150 MPa的蠕变行为,观察了不同形态的蠕变损伤组织并分析了蠕变变形及断裂机理。当T/Tm>0.5(T为使用温度,Tm为蠕墨铸铁熔点)、载荷大于150 MPa时这种蠕墨铸铁的蠕变变形显著,且变形主要来自基体变形、蠕变空洞的形核长大以及石墨/基体界面的开裂。随着温度的提高和载荷的增加,蠕变变形逐渐由晶界移动转变为晶内变形。在蠕变过程中有两种开裂机制:(I)微裂纹在石墨/基体开裂处形核长大并优先沿铁素体向基体扩展,与邻近石墨/基体开裂连接而逐渐形成主裂纹;(II)晶界处的蠕变空洞形核长大转变成蠕变裂纹。氧原子通过石墨的连通性向组织内部扩散,造成上述两种裂纹表面氧化。由于,石墨、铁素体、珠光体三者性能的差异,石墨/铁素体界面比石墨/珠光体界面更易发生开裂。另外,在773 K、823 K组织中的珠光体分解明显,层片状渗碳体逐渐转变为短棒状,在晶界附近则以颗粒状为主。

关键词 金属材料蠕墨铸铁蠕变变形蠕变断裂蠕变氧化开裂珠光体分解    
Abstract

The creep behavior of a high strength compacted graphite cast iron (CGI) containing Cu, Mo and Sn under tensile load of 40~150 MPa in air at 623~823 K was investigated, while the creep damage was observed and the relevant mechanism of deformation and fracture during creep test was further analyzed. When the ratio T/Tm>0.5 (T represents test temperature, Tm melt point of CGI) and the load is greater than 150 MPa, the creep deformation is significant. The creep deformation consists of matrix deformation, initiation and development of creep cavities at grain boundaries and debondings of the interface graphite/matrix. With the increasing temperature and tensile load, the creep deformation is gradually changing from grain boundary sliding to intragranular deformation. Two kind of cracks were observed in the microstructure of CGI: (1) cracks propagated preferentially in ferrite phase and connected with adjacent debondings of the interface graphite/matrix, (2) microcracks caused by nucleation and growth of creep cavities along grain boundaries. It is worthy to mention that the 3D network of the vermicular graphite in CGI may facilitate the inward diffusion of oxygen atoms throughout the sample of CGI, therewith induces the oxidation of the above mentioned two type cracks. Due to the difference in properties between graphite with ferrite and pearlite respectively, the debonding occurance for the inerface of graphite/ferrite may be easier than that of graphite/pearlite. In addition, pearlite in the microstructure may decompose significantly at 773 K and 823 K for 100 h, as a result, the lamellar cementite should be converted to short rods and granules at grain boundaries.

Key wordsmetallic materials    compacted graphite cast iron    creep deformation    creep fracture    creep-oxidation crack    pearlite decomposition
收稿日期: 2018-01-03     
ZTFLH:  TG14  
基金资助:国家重点研究基础发展计划(61322402)
作者简介: 武岳,男,1987年生,博士生
ElementCSiMnCuMoSnPSFe
Percentage3.91.80.20.550.20.03<0.060.02~0.03Bal.
表1  试验用蠕墨铸铁化学成分
图1  蠕墨铸铁浇铸楔形试块示意图
图2  蠕墨铸铁蠕变试样的尺寸
图3  蠕墨铸铁的铸态组织
图4  蠕墨铸铁的高温拉伸性能
图5  载荷为150 MPa不同温度下CGI的蠕变应变曲线
图6  不同载荷和温度条件下CGI的蠕变应变
图7  载荷为150 MPa时CGI的稳态蠕变速率与温度的关系
图8  在不同温度下CGI的蠕变速率与载荷的关系
图9  在不同载荷和温度下蠕变100 h后CGI的显微组织
图10  在不同温度和载荷下CGI蠕变100 h后的损伤组织
CETm/KT/KT/Tm
4.514276230.44
7230.49
7730.54
8230.58
表2  CGI蠕变试验的约比温度
图11  在不同温度和载荷下蠕动不同时间蠕墨铸铁的近表面氧化
图12  在773 K载荷为150 MPa CGI蠕变100 h后的晶界蠕变氧化裂纹:
图13  CGI的蠕变氧化交互图示
图14  石墨脱落形成的表面微裂纹
图15  蠕变裂纹的扩展
图16  CGI的蠕变裂纹扩展示意图
1 YangT, GuoY C, LiJ P, et al. Microstructure and mechanical properties of thin-section compacted graphite cast iron [J]. 2008, 57(3): 270
1 杨通, 郭永春, 李建平等. 薄壁蠕墨铸铁的组织与性能研究 [J]. 铸造, 2008, (03): 270)
2 YangZ, TaoD, GuoY C, et al. Effect of multi-component micro-alloying on microstructure and properties of compacted graphite cast iron [J]. Foundry, 2014, (02): 115
2 杨忠, 陶栋, 郭永春等. 多元低合金化对蠕墨铸铁组织与性能的影响 [J]. 铸造, 2014, (02): 115)
3 MoonesanM, HonarbakhshRaoufA, MadahF, et al. Effect of alloying elements on thermal shock resistance of gray cast iron [J]. Journal of Alloys and Compounds, 2012, 520(Supplement C):226
4 Imasogie, B I Microstructural features and mechanical properties of compacted graphite iron treated with calcium-magnesium based master alloy [J]. Journal of Materials Engineering and Performance,2003, 12(3): 239
5 GhodratS, JanssenM, KestensL A I. et al. Volume expansion of compacted graphite iron induced by pearlite decomposition and the effect of oxidation at elevated temperature [J]. Oxidation of Metals, 2013, 80(1-2): 161
6 DawsonS. Compacted graphite iron-a material solution for modern diesel engine cylinder blocks and heads [J]. Foundry Technology, 2009, (04): 455
6 史蒂夫·道森. 蠕墨铸铁—现代柴油发动机缸体和缸盖的材料 [J]. 铸造技术, 2009, (04): 455)
7 YuanY L, HeG Q, FanK L, et al. Low cycle fatigue behavior of gray cast iron used for engine [J]. Chinese journal of materials research, 2013, (05): 469
8 SelinM. Tensile and thermal properties in compacted graphite irons at elevated temperatures [J]. Metallurgical and Materials Transactions A, 2010, 41(12): 3100
9 QiuY, PangJ C, YangE N, et al. Transition of tensile strength and damaging mechanisms of compacted graphite iron with temperature [J]. Materials Science and Engineering: A, 2016, 677(Supplement C):290
10 QiuY, PangJ C, LiS X, et al. Influence of thermal exposure on microstructure evolution and tensile fracture behaviors of compacted graphite iron [J]. Materials Science and Engineering: A, 2016, 664(Supplement C):75
11 MaZ J, TaoD, YangZ, et al. The effect of vermicularity on the thermal conductivity of vermicular graphite cast iron [J]. Materials and Design, 2016, 93: 48
12 ZhangJ S. High temperature deformation and fracture of material [M]. Beijing: Science Press, 2007: 3
12 张俊善. 材料的高温变形与断裂 [M]. 北京: 科学出版社, 2007: 3)
13 TuS D, XuanF Z, WangW Z. Some critical issues in creep and fracture assessment at high temperature [J]. Acta metallurgica sinica, 2009, (07): 781
13 涂善东, 轩福贞, 王卫泽. 高温蠕变与断裂评价的若干关键问题 [J]. 金属学报, 2009, (07): 781)
14 NortonF H. The Creep of Steel at High Temperatures [M]. McGraw-Hill, London, 1929
15 BaileyR W. The utilization of creep test data in engineering design [J]. Proceedings of the Institution of Mechanical Engineers, 1935, 131: 131
16 EvansR W, WilshireB. Creep of Metals and Alloys [M]. The Institute of Metals, London, 1985
17 KachanovL M. On Creep Rupture Time [A]. Proceeding of the Academy Sciences of USSR, 1958, 8, p 26-31
18 RabotnovY N, LeckieF A, PragerW. Creep Problems in Structural Members [J]. Journal of Applied Mechanics, 1969, 37(1): 249
19 WuX J, QuanG, MacNeilR, et al. Thermomechanical fatigue of ductile cast iron and its life prediction [J]. Metallurgical and Materials Transactions A, 2015, 46: 2530
20 WuX J. A model of nonlinear fatigue-creep (dwell) interactions [J]. Journal of Engineering for Gas Turbines and Power, 2009, 131: 032101-1-032101-6
21 WuX J, QuanG, MacNeilR, et al. Failure mechanisms and damage model of ductile cast iron under low-cycle fatigue conditions [J]. Metallurgical and Materials Transactions A, 2014, 45(11): 5085
22 WuX J, WilliamsS, GongD. A true-stress creep model based on deformation mechanisms for polycrystalline materials [J]. Journal of Materials Engineering and Performance, 2012, 21(11): 2255
23 JingG X, ZhangS Y, FuW Q, et al. Loading characteristics of cast iron cylinder head for high-strengthened diesel engine [J]. Vehicle Engine, 2017, (01): 42
23 景国玺, 张树勇, 付文清等. 高强化柴油机铸铁缸盖承载特性研究 [J]. 车用发动机, 2017, (01): 42)
24 ChenI W. Cavity growth on a sliding grain boundary [J]. Metallurgical Transactions A, 1983, 14(11): 2289
25 FrostH J, AshbyM F. Deformation Mechanism Maps [M]. Pergamon Press, 1982
26 WuY, LiJ P, ZhangY J, et al. Effect of heat treatment on mechanical properties and thermal conductivity of RuT300 vermicular graphite cast iron [J]. Transactions of materials and heat treatment, 2017, (02): 143
26 武岳, 李建平, 张延京等. 热处理工艺对RuT300蠕墨铸铁力学性能与导热性能的影响 [J]. 材料热处理学报, 2017, (02): 143)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.