Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 518-524    DOI: 10.11901/1005.3093.2017.486
  研究论文 本期目录 | 过刊浏览 |
球形聚丙烯/聚丁烯-1合金粒子制备和性能
任合刚1(), 李振友2, 闫义彬1, 王斯晗1, 崔晓鹏3, 刘宾元3
1 中国石油 石油化工研究院大庆化工研究中心 大庆 163714
2 中国石油天然气股份有限公司炼油与化工分公司 北京 100007
3 河北工业大学化工学院高分子科学与工程研究所 天津 300130
Preparation and Properties of Spherical Particles of Polymer Alloy Polypropylene/Polybutene-1
Hegang REN1(), Zhenyou LI2, Yibin YAN1, Sihan WANG1, Xiaopeng CUI3, Binyuan LIU3
1 Daqing Petrochemical Research Center, Petrochemical Research Institute of CNPC, Daqing 163714, China
2 Refining and Chemical Branch of CNPC, Beijing 100007, China
3 Institute of Polymer Science and Engineering, Hebei University of Technology, Tianjin 300130, China
引用本文:

任合刚, 李振友, 闫义彬, 王斯晗, 崔晓鹏, 刘宾元. 球形聚丙烯/聚丁烯-1合金粒子制备和性能[J]. 材料研究学报, 2018, 32(7): 518-524.
Hegang REN, Zhenyou LI, Yibin YAN, Sihan WANG, Xiaopeng CUI, Binyuan LIU. Preparation and Properties of Spherical Particles of Polymer Alloy Polypropylene/Polybutene-1[J]. Chinese Journal of Materials Research, 2018, 32(7): 518-524.

全文: PDF(1925 KB)   HTML
摘要: 

用原位聚合方法使用球形Ziegler-Natta催化剂制备新型聚丁烯-1合金材料,通过DSC、SEM、XRD和13C NMR等手段对产物的形态、物性和结构进行了表征,考察了丁烯-1加入量对聚合产物形态、结构及聚合性能的影响。结果表明:与丁烯-1本体聚合相比用原位聚合可改善聚丁烯-1产物的形态,降低聚合物粒子之间的粘联,使聚合物在釜内成为球形颗粒,催化活性最高为10.4 kg/gCat,聚合产物的堆积密度为0.44 g/cm3,粒径约为500 μm;同时,用原位聚合可缩短聚丁烯-1产品由不稳定的晶型II向稳定的晶型I转变周期。聚丁烯-1釜内合金的拉伸强度和弯曲模量都随着丙烯结构单元含量的提高而提高,但是聚合物的密度、冲击强度和断裂伸长率降低。

关键词 有机高分子材料Ziegler-Natta 催化剂原位聚合釜内合金    
Abstract

A new type of polymer alloy of polypropylene/polybutene-1 was prepared by in-situ polymerization with spherical Ziegler-Natta as catalyst. The effect of butene-1 addition on the morphology, structure and the properties of polymer alloy was investigated. The polymers obtained were characterized by means of DSC, SEM XRD and 13C NMR. The results show that compared with the bulk polymerization of butene-1, the in-situ polymerization could improve the morphology of the product made from polybutene-1, and effectively reduce the adhesion between polymer particles. The catalytic activity, stacking density and particle size of the prepared polymer alloy are 10.4 kg/gCat, 0.44 g/cm3 and 500 μm, respectively. Moreover, the in-situ polymerization could effectively shorten the transition period of the polybutene-1 product from the unstable crystal form II to the stable crystalline form I. The mechanical property test revealed that with the rise of the content of the structural unit in propylene the tensile strength and flexural modulus of the polybutene alloys were increased, however, the density, impact strength and elongation at break were decreased.

Key wordsorganic polymer materials    Ziegler-Natta catalyst    in-situ polymerization    reactor alloy
收稿日期: 2017-08-15     
ZTFLH:  TQ325  
作者简介:

作者简介 任合刚,男,1981年生,博士生

Sample Butene-1/Catalyst
/g·g-1
Catalytic
efficiency
/kg·g-1 Cat
Bulk density·g·cm-3 Polymer fractions (mass fraction, %) Polymer morphology
Heptane
insoluble
fraction
Heptane
soluble
fraction
Diethyl ether
soluble
fraction
PPb - 4.6 0.43 98.5 1.5 - Spherical particles
PB1 6000 7.8 0.42 81.0 18.3 0.7 Loose spherical particles
PB2 8000 10.4 0.44 63.6 34.7 1.7 Loose spherical particles
PB3 10000 9.3 0.36 53.1 45.6 1.3 Loose spherical particles
PB4 12000 8.8 0.35 50.5 48.0 1.5 Partial caking
PB5 16000 8.0 - 40.8 57.5 1.7 Partial caking
PB6 20000 7.6 - 16.5 80.1 3.4 Partial caking
PB0a 12000 6.0 - 0 98.8 1.2 Bulk
表1  MgCl2负载型Ziegler-Natta催化剂催化丙烯/丁烯-1连续聚合结果
图1  聚丁烯-1合金典型的DSC曲线
Sample PB phase PP phase
Tm/℃ Χc/%, mass fraction Tc/℃ Tm/℃ Χc/%, mass fraction Tc/℃
PB0 124.32 59.63 - - -
PB2 126.98 63.56 72.14 162.16 5.84 108.24
PP - - - 159.20 78.95 112.24
表2  聚丁烯-1合金的结晶性能
图2  聚丁烯-1合金的13C NMR谱图
图3  聚合物的XRD谱图
图4  室温下晶型I和II含量与老化时间的关系
图5  催化剂和聚合物的SEM照片
图6  聚丁烯-1合金颗粒的生长模型
Sample Tensile strength
/MPa
Elongation at break/% Impact strength /kJ·m-2 Flexural modulus
/MPa
Hardness
(Shore D)
Density
/g·cm-3
PB0 31.2±2.0 330±15 15.6±5.0 407±18 42.8 0.9365
PB6 33.5±1.8 210±19 65.1±2.5 489±20 58.5 0.9225
PB2 35.3±1.6 101±20 42.5±2.0 711±35 65.8 0.9071
PP 40.7±2.5 5±3 2.0±0.6 2014±74 72.9 0.9012
表3  聚丁烯-1合金的力学性能
[1] Hua S S, Huang B C.Modification of small bulk polypropylene plant by 1-butene polymerization[J]. Sci. Technol. Innov. Herald, 2010, (24): 108(华树森, 黄宝琛. 小本体聚丙烯装置改造进行1-丁烯聚合[J]. 科技创新导报, 2010, (24): 108)
[2] Huang B C, Zhang B Y, Yao W, et al.Bulk depositing synthesis process of isotactic polybutylene-1 [P]. Chin Pat, CN101020728A, 2007(黄宝琛, 郑保永, 姚薇等.高全同聚丁烯-1的本体沉淀合成方法 [P]. 中国专利,CN101020728A, 2007)
[3] He A H, Wang C.Spherical polybutylene-1 with high isotacticity and preparation method thereof [P]. Chin Pat, CN103288993A, 2013(贺爱华, 王超. 高等规度球形聚丁烯-1及其制备方法 [P]. 中国专利, CN103288993A, 2013)
[4] He A H, Zheng W P, Shi Y W, et al.In situ synthesis of polybutene-1/polypropylene spherical alloys within a reactor with an MgCl2-supported Ziegler-Natta catalyst[J]. Polym. Int ., 2012, 61: 1575
[5] Jiang B Y, Shao H F, He A H, et al.Sequential two-stage polymerization for synthesis of isotactic polypropylene/isotactic polybutene-1 alloys: composition, morphology and granule growing mechanism[J]. Polym. Chem ., 2015, 6: 3315
[6] Zhang X M, Bi F Y, Song W B, et al.Preparation method for high isotactic polybutene-1 [P]. Chin Pat, CN103772557A, 2014(张晓萌, 毕福勇, 宋文波等. 高等规聚丁烯-1的制备方法 [P]. 中国专利, CN103772557A, 2014)
[7] Bi F Y, Song W B, Zhang X M, et al.Preparation of high isotactic polybutene-1[J]. Petrochem. Technol ., 2014, 43: 441(毕福勇, 宋文波, 张晓萌等. 高等规聚1-丁烯的制备[J]. 石油化工, 2014, 43: 441)
[8] Liu B Y, Ren H G, Yang M, et al.Spherical catalyst for 1-butene polymerization as well as preparation method and application thereof [P]. Chin Pat, CN101914172B, 2012(刘宾元, 任合刚, 杨敏等.1-丁烯聚合用的球形催化剂及其制备方法和应用 [P]. 中国专利, CN101914172B, 2012)
[9] Abedi S, Sharifi-Sanjani N.Preparation of high isotactic polybutene-1[J]. J. Appl. Polym. Sci ., 2000, 78: 2533
[10] Liu Y P, Cui K P, Tian N, et al.Stretch-induced crystal-crystal transition of polybutene-1: an in situ synchrotron radiation wide-angle X-ray scattering study[J]. Macromolecules, 2012, 45: 2764
[11] Resconi L, Camurati I, Malizia F.Metallocene catalysts for 1-butene polymerization[J]. Macromol. Chem. Phys ., 2006, 207: 2257
[12] Zhang C Y, Dong B, Zhang X Q, et al.Preparation and characterization of propylene/1-butene alloy with bulk copolymerization[J]. Chem. J. Chin. Univ ., 2014, 35: 2014(张春雨, 董博, 张学全等. 本体共聚合制备丙烯/1-丁烯合金及表征[J]. 高等学校化学学报, 2014, 35: 2014)
[13] Ma Y P, Li L G, Shao H F, et al.Microstructure and its effect on the properties of poly(1-butene) alloys within reactor[J]. Chem. World, 2016, (5): 261(马亚萍, 李兰阁, 邵华锋等. 聚1-丁烯釜内合金的微观结构及其对性能的影响[J]. 化学世界, 2016, (5): 261)
[14] Fisch M H, Dannenberg J J.Propylene incorporation in 1-butene copolymers by carbon-13 nuclear magnetic resonance spectrometry[J]. Anal. Chem ., 1977, 49: 1405
[15] Wang X F, Zhao Y X, Bi F Y, et al.The structure and properties of polybutene-1—(Ⅰ) the relation between isotacticity and properties of polybutene-1[J]. Polym. Mater. Sci. Eng ., 2008, 24(7): 66(王秀峰, 赵永仙, 毕福勇等. 全密度聚丁烯-1的结构与性能—(I)全同含量与聚丁烯-1性能的关系[J]. 高分子材料科学与工程, 2008, 24(7): 66)
[16] Stolte I, Androsch R, Di Lorenzo M L, et al. Effect of aging the glass of isotactic polybutene-1 on form II nucleation and cold crystallization[J]. J. Phys. Chem. B, 2013, 117: 15196
[17] Li L, Liu T, Zhao L, et al.CO2-induced crystal phase transition from form II to I in isotactic poly-1-butene[J]. Macromolecules, 2009, 42: 2286
[18] Cecchin G, Marchetti E, Baruzzi G.On the mechanism of polypropene growth over MgCl2/TiCl4 catalyst systems[J]. Macromol. Chem. Phys ., 2001, 202: 1987
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.