|
|
基于碳酸镁模板的氮掺杂多孔炭的制备及其电化学性能 |
范景彪1, 李志伟1, 骆建敏2, 黄艳1, 陈楠楠1, 米红宇1( ) |
1 新疆大学 新疆维吾尔自治区洁净煤转化与化工过程重点实验室 乌鲁木齐 830046 2 新疆大学 理化测试中心 乌鲁木齐 830046 |
|
Preparation and Electrochemical Performance of Nitrogen-Doped Porous Carbon with MgCO3 as Template |
Jingbiao FAN1, Zhiwei LI1, Jianmin LUO2, Yan HUANG1, Nannan CHEN1( ), Hongyu MI1 |
1 Xinjiang Uygur Autonomous Region Key Laboratory of Coal Clean Conversion and Chemical Engineering Process, Xinjiang University, Urumqi 830046, China 2 Physical and Chemical Detecting Center, Xinjiang University, Urumqi 830046, China |
引用本文:
范景彪, 李志伟, 骆建敏, 黄艳, 陈楠楠, 米红宇. 基于碳酸镁模板的氮掺杂多孔炭的制备及其电化学性能[J]. 材料研究学报, 2018, 32(8): 599-606.
Jingbiao FAN,
Zhiwei LI,
Jianmin LUO,
Yan HUANG,
Nannan CHEN,
Hongyu MI.
Preparation and Electrochemical Performance of Nitrogen-Doped Porous Carbon with MgCO3 as Template[J]. Chinese Journal of Materials Research, 2018, 32(8): 599-606.
[1] | Li X, Hao C, Tang B, Wang Y, et al.Supercapacitor electrode materials with hierarchically structured pores from carbonization of MWCNTs and ZIF-8 composites[J]. Nanoscale, 2017, 9(6): 2178 | [2] | Gonzalez A, Goikolea E, Andoni Barrena J, et al.Review on supercapacitors: technologies and materials[J]. Renew. Sust. Energ. Rev., 2016, 58: 1189 | [3] | Yu Z N, Tetard L, Zhai L, et al.Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions[J]. Energ. Environ. Sci., 2015, 8(3): 702 | [4] | Ye L; Liang Q H; Huang Z H, et al. A supercapacitor constructed with a partially graphitized porous carbon and its performance over a wide working temperature range[J]. J Mater. Chem. A., 2015, 3(37): 18860 | [5] | Sheberla D, Bachman J C, Elias J S, et al.Conductive MOF electrodes for stable supercapacitors with high areal capacitance[J]. Nat. Mater., 2016, 16(2): 220 | [6] | Shayeh,J S, Sadeghinia M, Siadat, S O R, et al. A novel route for electrosynthesis of CuCr2O4 nanocomposite with p-type conductive polymer as a high performance material for electrochemical supercapacitors[J]. J. Colloid. Interf. Sci., 2017, 496(2017): 401 | [7] | He Z, Zhang G, Chen Y, et al.The effect of activation methods on the electrochemical performance of ordered mesoporous carbon for supercapacitor applications[J]. J. Mater. Sci., 2017, 52(5): 2422 | [8] | Wang Q, Yan J, Fan Z.Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities[J]. Energ. Environ. Sci., 2016, 9(3): 729 | [9] | Ling Z, Wang Z, Zhang M, et al.Sustainable synthesis and assembly of biomass-derived B/N co-doped carbon nanosheets with ultrahigh aspect ratio for high-performance supercapacitors[J]. Adv. Funct. Mater., 2016, 26(1): 111 | [10] | Presser V, Heon M, Gogotsi Y.Carbide-derived carbons from porous networks to nanotubes and graphene[J]. Adv. Funct. Mater., 2011, 21(5): 810 | [11] | Duan L Q, Ma Q S, Chen C H.Research progress of preparation of nanoscale porous carbon by CDC method[J]. J. Inorg. Mater., 2013, 28(10): 1051(段力群,马青松,陈朝辉. CDC法制备纳米多孔碳研究进展[J]. 无机材料学报, 2013, 28(10): 1051) | [12] | Chang B, Zhang S, Sun L, et al.2D graphene-like hierarchically porous carbon nanosheets from a nano-MgO template and ZnCl2 activation: morphology, porosity and supercapacitance performance[J]. Rsc. Adv., 2016, 6(75): 71360 | [13] | Wang H, Sun X, Liu Z, et al.Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes[J]. Nanoscale, 2014, 6(12): 6577 | [14] | Ma C, Shi J, Song Y, et al.Preparation and capacitive properties of nitrogen-enriched hierarchical porous carbon[J]. Int. J. Electrochem Sci., 2012, 7(8):730 | [15] | Li M, Liu C, Cao H, et al.KOH self-templating synthesis of three-dimensional hierarchical porous carbon materials for high performance supercapacitors[J]. J Mater. Chem. A, 2014, 2(36): 14844 | [16] | Zhang G, Song Y, Zhang H, et al.Radially aligned porous carbon nanotube arrays on carbon fibers: a hierarchical 3D carbon nanostructure for high-performance capacitive energy storage[J]. Adv. Funct. Maters., 2016, 26(18): 3012 | [17] | Liu X, Li S, Mi R, et al.Porous structure design of carbon xerogels for advanced supercapacitor[J]. Appl. Energ., 2015, 153(2015): 32 | [18] | Wang S, Kaneko K.CO2-pressure swing activation for efficient production of highly porous carbons[J]. Carbon, 2015, 85: 245 | [19] | Li X, Li L, Wang X, et al.Flexible and self-healing aqueous supercapacitors for low temperature applications: polyampholyte gel electrolytes with biochar electrodes[J]. Sci. Rep, 2017, 7(1): 1685 | [20] | Goldfarb J L, Dou G, Salari M, et al.Biomass-based fuels and activated carbon electrode materials: an integrated approach to green energy systems[J]. ACS Sustain Chem Eng, 2017, 5(4): 3046 | [21] | He X, Zhang H, Zhang H, et al.Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors[J]. J. Mater. Chem. A, 2014, 2(46): 19633 | [22] | He X, Zhang N, Shao X, et al.A layered-template-nanospace-confinement strategy for production of corrugated graphene nanosheets from petroleum pitch for supercapacitors[J]. Chem. Eng. J, 2016, 297: 121 | [23] | He X, Li R, Qiu J, et al.Synthesis of mesoporous carbons for supercapacitors from coal tar pitch by coupling microwave-assisted KOH activation with a MgO template[J]. Carbon, 2012, 50(13): 4911 | [24] | Chen A, Li Y, Yu Y, et al.Nitrogen-doped hollow carbon spheres for supercapacitors application[J]. J Mater. Sci., 2016, 688: 1 | [25] | Luo H, Chen Y Z, Wang B, et al.Nitrogen-self-doped mesoporous carbons synthesized by the direct carbonization of ferric ammonium citrate for high-performance supercapacitors[J]. J. Solid. State. Electr., 2017, 21(2): 515 | [26] | Peng Z, Xu L, Meng H, et al.Design and tailoring of the 3D macroporous hydrous RuO2 hierarchical architectures with a hard-template method for high-performance supercapacitors[J]. ACS Appl. Mater. Inter., 2016, 9(5): 4577 | [27] | Feng X M.Synthesis of polyaniline nanofiber and its application to the biosensor[J]. Funct. Mater, 2010, 41(7): 1250(冯晓苗. 聚苯胺纳米纤维的合成及其在生物传感器中的应用[J]. 功能材料, 2010, 41(7): 1250) | [28] | Qin L Q, Liu Y B, Huang Z X, et al.Combustion behavior and flame retardation mechanism of epoxy resins blended with basic magnesium carbonate[J]. Journal of WuHan university of Technology, 2008, 30(4): 19(秦麟卿, 刘以波, 黄志雄等. 碱式碳酸镁阻燃环氧树脂的研究[J]. 武汉理工大学学报, 2008, 30(4): 19) | [29] | Jin X M, Sun G H, Wang M W, et al.Research of porous carbons by MgO template and influence factors[J]. Guangzhou Chemical Industry, 2016, 44(8): 13(金香梅, 孙光辉, 王明伟等. MgO模板法制备多孔碳及其影响因素的研究[J]. 广州化工, 2016, 44(8): 13) | [30] | Hong X, Zhang B, Murphy E, et al.Three-dimensional reduced graphene oxide/polyaniline nanocomposite film prepared by diffusion driven layer-by-layer assembly for high-performance supercapacitors[J]. J Power Sources, 2017, 343: 60 | [31] | Senthilkumar S T, Senthilkumar B, Balaji S, et al.Preparation of activated carbon from sorghum pith, and its structural and electrochemical properties[J]. Mater. Res. Bull., 2011, 46(3): 413 | [32] | Ding Y, Zhang N, Zhang J, et al.The additive-free electrode based on the layered MnO2 nanoflowers/reduced graphene oxide film for high performance supercapacitor[J]. Ceram. Int., 2017, 43(7): 5374 | [33] | Reiche S, Blume R, Zhao X C, et al.Reactivity of mesoporous carbon against water-An in-situ XPS study[J]. Carbon, 2014, 77(10): 175 | [34] | Wei J S, Ding H, Wang Y G.Hierarchical porous carbon materials with high capacitance derived from Schiff-base networks[J]. ACS Appl. Mater. Inter., 2015, 7(10): 5811 | [35] | Choudhury A, Kim J H, Mahapatra S S, et al.Nitrogen-enriched porous carbon nanofiber mat as efficient flexible electrode material for supercapacitors[J]. ACS Sustain. Chem. Eng., 2017, 5(3): 2109 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|