Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 105-111    DOI: 10.11901/1005.3093.2017.223
  研究论文 本期目录 | 过刊浏览 |
应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响
李会鹏1, 熊毅1,2(), 路妍1,2, 贺甜甜1, 范梅香1, 任凤章1,2
1 河南科技大学材料科学与工程学院 洛阳 471023
2 有色金属共性技术河南省协同创新中心 洛阳 471023
Effect of Strain Rate on Microstructure Evolution and Mechanical Property of 316LN Austenitic Stainless Steel at Cryogenic Temperature
Huipeng LI1, Yi XIONG1,2(), Yan LU1,2, Tiantian HE1, Meixiang FAN1, Fengzhang REN1,2
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Collaborative Innovation Center of Nonferrous Metals, Henan Province, Luoyang 471023, China
引用本文:

李会鹏, 熊毅, 路妍, 贺甜甜, 范梅香, 任凤章. 应变速率对低温拉伸316LN奥氏体不锈钢微观组织和力学性能的影响[J]. 材料研究学报, 2018, 32(2): 105-111.
Huipeng LI, Yi XIONG, Yan LU, Tiantian HE, Meixiang FAN, Fengzhang REN. Effect of Strain Rate on Microstructure Evolution and Mechanical Property of 316LN Austenitic Stainless Steel at Cryogenic Temperature[J]. Chinese Journal of Materials Research, 2018, 32(2): 105-111.

全文: PDF(5278 KB)   HTML
摘要: 

以两种应变速率(5×10-4 s-1和1×10-2 s-1,分别代表慢速拉伸和快速拉伸)对316LN奥氏体不锈钢板状试样进行低温(-40℃)单轴拉伸实验,借助金相显微镜(OM)、透射电镜(TEM)、扫描电镜(SEM)、X射线衍射仪(XRD)及三维形貌轮廓仪分析了拉伸变形过程中的微观组织演变和力学性能变化规律。结果表明,316LN奥氏体不锈钢在低温拉伸条件下发生形变诱导马氏体相变,且马氏体转变量随着应变速率的增加而减少;屈服强度随着应变速率的增加而升高,抗拉强度和延伸率则随着应变速率的增加而降低;拉伸断口形貌均呈现出典型的韧性断裂特征。变形组织均以位错缠结和T-M(Twin-matrix)层片状组织为主,随着应变速率的增加,位错缠结程度加剧,T-M层片状组织的层片间距减小。

关键词 金属材料316LN奥氏体不锈钢应变速率微观组织力学性能形变诱导马氏体相变    
Abstract

The uniaxial tensile property of 316LN austenitic stainless steel (ASS) plate at -40 ℃was examined by strain rates of 5×10-4 s-1 and 1×10-2 s-1 respectively, while the microstructure evolution was characterized by means of OM, TEM, SEM, XRD and 3D profile profiler. The results showed that the deformation induced martensite transformation occurred in 316LN austenitic stainless steel at cryogenic temperature, and the martensite transformation decreased with the increase of strain rate. The yield strength increased with the increase of strain rate, while the tensile strength and elongation decreased with the increase of strain rate. The tensile fractured surface showed typical ductile fracture. The deformed microstructure composed mainly of dislocation tangles and T-M(twin-matrix)lamellar structures. With the increase of strain rate, the dislocation tangles aggravated and the interlamellar spacing of T-M(twin-matrix)lamellar structures reduced.

Key wordsmetallic materials    316LN ASS    strain rate    microstructure    mechanical properties    deformation induced martensite transformation
收稿日期: 2017-03-31     
ZTFLH:  TG113  
基金资助:国家自然科学基金(51201061),河南省高校科技创新人才支持计划(17HASTIT026),河南省科技攻关计划(152102210077),河南省国际科技合作计划(172102410032),河南省教育厅科技计划(16A430005),河南科技大学科技创新团队(2015XTD006)
作者简介:

作者简介 李会鹏,男,1992年生,硕士生

图1  316LN不锈钢固溶处理后的组织
图2  拉伸试样示意图
图3  -40℃下316LN奥氏体不锈钢不同应变速率下断口附近处的微观组织形貌
图4  -40℃下316LN不锈钢的应力-应变曲线
图5  -40℃下拉伸试样的XRD图谱
图6  316LN不锈钢不同应变速率拉伸变形前后的表面形貌
图7  -40℃下316LN奥氏体不锈钢不同应变速率下的断口形貌
[1] Talonen J, Nenonen P, Pape G.Effect of strain rate on the strain-induced-martensite transformation and mechanical properties of austenitic stainless steels[J]. Metallurgical and Materials Transactions A, 2005, 36: 421
[2] Liu W, Li Z B, Wang X,et al.Effect of strain rate on strain induced α?-martensite transformation and mechanical response of austenitic stainless steels[J]. Acta Metallurgica Sinica, 2009, 45(3): 285(刘伟, 李志斌, 王翔等. 应变速率对奥氏体不锈钢应变诱发α?-马氏体转变和力学行为的影响[J]. 金属学报, 2009, 45(3): 285)
[3] Ye L Y, Li X F, Chen J.Influence of tensile strain rates on mechanical properties of 304 austenitic stainless steel at room temperature[J]. Journal of Plasticity Engineering, 2013, 20(2): 89(叶丽燕, 李细锋, 陈军. 不同拉伸速率对SUS304不锈钢室温拉伸力学性能的影响[J]. 塑性工程学报, 2013, 20(2): 89)
[4] Hei Z G, Duan X W, Liu J S.Influence of temperature and strain rate on the high-temperature performances of 316 LN steel[J]. Journal of Taiyuan University of Science and Technology, 2012, 33(4): 290(黑志刚, 段兴旺, 刘建生. 温度和应变速率对316LN钢高温性能的影响[J]. 太原科技大学学报, 2012, 33(4): 290)
[5] Prasad Reddy G V, Sandhya R, Sankaran S,et al. Creep-fatigue interaction behavior of 316LN austenitic stainless steel with varying nitrogen content[J]. Materials and Design, 2015, 88: 972
[6] Prasad Reddy G V, Mariappan K, Kannan R, et al.Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: Part-II fatigue life and fracture[J]. International Journal of Fatigue, 2015, 81: 309
[7] Prasad Reddy GV, Kannan R, Mariappan K, et al.Effect of strain rate on low cycle fatigue of 316LN stainless steel with varying nitrogen content: Part-I cyclic deformation behavior[J]. International Journal of Fatigue, 2015, 81: 299
[8] Park W S, Yoo S W, Kim M H,et al.Strain-rate effects on the mechanical behavior of the AISI 300 series of austenitic stainless steel under cryogenic environments[J]. Materials and Design, 2010, 31: 3630
[9] Byun T S, Lee E H, Hunn J D.Plastic deformation in 316LN stainless steel-characterization of deformation microstructures[J]. Journal of Nuclear Materials, 2003, 321: 29
[10] Byun T S, Hashimoto N, Farrell K.Temperature dependence of strain hardening and plastic instability behaviors in austenitic stainless steels[J]. Acta Materialia, 2004, 52(13): 3889
[11] Barat K, Bar H N, Mandal D, et al.Low temperature tensile deformation and acoustic emission signal characteristics of AISI304LN stainless steel[J]. Materials Science & Engineering A, 2014, 597: 37
[12] Meyers M A, Vohringer O, Lubarda V A.The onset of twinning in metals: A constitutive description[J]. Acta Materialia, 2001, 49(19): 4025
[13] Goodchild D, Roberts W T, Wilson D V.Plastic deformation and phase transformation in textured austenitic stainless steel[J]. Scripta Metallurgica, 1970, 18: 1137
[14] Lecroisey F, Pineau A.Martensitic transformations induced by plastic-deformation in Fe-Ni-Cr-C system[J]. Metallurgical Transactions, 1972, 3(2): 387
[15] Hecker S S, Stout M G, Staudhammer K P, et al.Effects of strain state and strain rate on deformation-induced transformation in 304 stainless-steel .1. magnetic measurements and mechanical-behavior[J]. Metallurgical Transactions A-Physical Metallurgy and Materials Science, 1982, 13(4): 619
[16] Shrinivas V, Varmal S K, Murr E.Deformation-induced martensitic characteristics in 304-sainless and 316-stainless steels during room-temperature rolling[J]. Metallurgical and Materials Transactions A, 1995, 26(3): 661
[17] Zou D Q, Li S H, He J.Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science and Engineering A, 2017, 680: 54
[18] Ferreira P J, Vander Sande J B, Amaral Fortes M, et al. Microstructure development during high-velocity deformation[J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3091
[19] Chen L F, Xiong Y, Li H P, et al.Microstructure evolution and mechanical properties of 316LN austenitic stainless steel after tensile deformation at different temperatures[J].Transactions of Materials and Heat Treatment, 2016, 37(10): 131(陈路飞, 熊毅, 李会鹏等. 不同温度下316LN奥氏体不锈钢拉伸变形后的组织演变与性能[J]. 材料热处理学报, 2016, 37(10): 131)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.