Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 481-486    DOI: 10.11901/1005.3093.2017.188
  研究论文 本期目录 | 过刊浏览 |
Cr5钢马氏体的相变塑性和应力对其相变动力学的影响
王葛1, 王亚杰1, 李磊1, 马占山1, 胡君泰1, 陈博伟1, 李强1,2()
1 燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
2 河北工业大学材料科学与工程学院 天津 300401
Martensite Transformation Plasticity and Influence of Stress on Phase Transformation Kinetics of Cr5 Steel
Ge WANG1, Yajie WANG1, Lei LI1, Zhanshan MA1, Juntai HU1, Bowei CHEN1, Qiang LI1,2()
1 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2 College of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
引用本文:

王葛, 王亚杰, 李磊, 马占山, 胡君泰, 陈博伟, 李强. Cr5钢马氏体的相变塑性和应力对其相变动力学的影响[J]. 材料研究学报, 2018, 32(7): 481-486.
Ge WANG, Yajie WANG, Lei LI, Zhanshan MA, Juntai HU, Bowei CHEN, Qiang LI. Martensite Transformation Plasticity and Influence of Stress on Phase Transformation Kinetics of Cr5 Steel[J]. Chinese Journal of Materials Research, 2018, 32(7): 481-486.

全文: PDF(1685 KB)   HTML
摘要: 

对大型支承辊用Cr5钢进行不同拉/压载荷作用下的膨胀实验,研究了Cr5钢马氏体的相变塑性和应力对马氏体相变动力学的影响。结果表明,Cr5钢在不同应力作用下马氏体相变系数α基本相同,近似为随温度变化的三次多项式,且随着温度的增加而减小,而应力对α的影响基本上可以忽略;马氏体转变的起始点(Ms)随着应力值的增大而升高;结合Greenwood-Johnson方程求出在不同应力作用下Cr5钢的马氏体相变塑性系数k值,近似约为4.32×10-5的常数。

关键词 金属材料马氏体相变相变动力学相变塑性Cr5钢    
Abstract

The martensitic transformation plasticity and effect of stress on the martensitic transformation kinetics were investigated by means of dilatometric experiments under different applied tensile and compressive stress on Cr5 steel used for backup rolls. Results show that the martensitic transformation coefficient α of Cr5 steel is almost the same under different stress, in other word, the influence of stress is negligible; Besides, the martensitic transformation coefficient α decreases with the increasing temperature, the relation of which with temperature can be described approximately as a cubic polynomial. The martensite transformation point (MS) increases with the increasing equivalent stress. The k-values of transformation plasticity coefficient under different stress may be acquired as ca 4.32×10-5 according to the Greenwood-Johnson equation.

Key wordsmetallic materials    martensitic transformation    transformation kinetics    transformation plasticity    Cr5 steel
收稿日期: 2017-03-15     
ZTFLH:  TB31  
基金资助:河北省自然科学基金(E2016203119),燕山大学重型机械协同创新课题(ZX01-20140100-03)
作者简介:

作者简介 王 葛,男,1975年,教授

C Si Mn Cr Mo V Ni
0.52 0.54 0.45 4.57 0.47 0.12 0.42
表1  实验用Cr5钢的化学成分
图1  实验试样的尺寸
图2  实验的工艺方案
图3  不同应力作用下马氏体的转变膨胀曲线
图4  无载荷条件下马氏体转变膨胀曲线
图5  无载荷条件下马氏体相变动力学系数α
图6  无载荷条件下马氏体转变量与转变温度的关系
图7  在不同应力作用下的马氏体相变动力学系数α
图8  马氏体起始转变点与应力的关系
T/℃ 20 100 200 300 400 700 900
E/GPa 215 188 197 189 184 93.3 41.7
表2  不同温度下Cr5钢的弹性模量E
Stress/MPa -100 -80 -60 -40 -20 0
βσ0 0.0120443308 0.0114757861 0.0109790378 0.0105425288 0.0100508532 0.0096261686
εtp -4.5556×10-3 -3.4749×10-3 -2.5375×10-3 -1.7206×10-3 -8.4937×10-4
k 4.5556×10-5 4.3437×10-5 4.2292×10-5 4.3014×10-5 4.2468×10-5
Stress/MPa 100 80 60 40 20
βσ0 0.0073438457 0.0076864351 0.0082743886 0.0086972753 0.0091560737
εtp 4.2843×10-3 3.4248×10-3 2.5353×10-3 1.7456×10-3 8.8412×10-4
k 4.2843×10-5 4.281×10-5 4.2256×10-5 4.3641×10-5 4.4206×10-5
表3  在不同应力作用下马氏体的相变应变及相变塑性
图9  在不同应力作用下的相变塑性系数
[1] Zhao X C.Research on Cr5-type forged steel for backup roll, rare metal materials and engineering[J]. Heat Treatment of Metal 2006, 36(7): 26(赵席春. Cr5型支承辊用钢的研究[J]. 金属热处理, 2006, 36(7): 26)
[2] Yuan Y S, Wang W Y, Yuan S,et al.The influence of quenching temperature on the microstructure and friction and wear properties of Cr5 bearing roller[J]. Journal of Materials and Heat Treament, 2015, 36(7): 69(元亚莎, 王文焱, 元莎等. 淬火温度对Cr5支承辊用钢组织和摩擦磨损性能影响[J]. 材料热处理学报, 2015, 36(7): 69
[3] Shi W, Fan H T, Liu Z, Phase transformation plasticity of mart- ensitic transformation in steel for Cr5 support roll[J]. Journal of Materials and Heat Treatment, 2006, 27(5): 122(石伟, 范洪涛, 刘庄. Cr5支承辊用钢马氏体相变的相变塑性研究[J]. 材料热处理学报, 2006, 27(5): 122)
[4] Coret M, Calloch S, Combescure A.Experimental study of the phase transformation plasticity of 16MND5 low carbon steel under multiaxial loading[J]. International Journal of Plasticity, 2002, 26(18): 1707
[5] Taleb L, Petit S.New investigations on transformation induced plasticity and its interaction with classical plasticity[J]. International Journal of Plasticity, 2006, 22(1): 110
[6] Liu C C.Experimental research and numerical simulation on quenching process of large forgings [D]. Beijing: Tsinghua Univers- ity Department of Mechanical Engineering, 1999(刘春成. 大型锻件淬火过程的试验研究和数值模拟 [D]. 北京:清华大学机械工程系, 1999)
[7] Liu Z, Wu X J, et al.Numerical Simulation of Heat Treatment Process [M]. Beijing: Science Press, 1996(刘庄,吴肇基等. 热处理过程的数值模拟 [M]. 北京: 科学出版社, 1996)
[8] Li Y J, Pan J S, et al.Martensitic phase transformation plastic- ity and its application in numerical simulation of quenching[J]. Journal of Shanghai Jiaotong University, 2001, 35(3): 352(李勇军, 潘健生等. 马氏体相变塑性及其在淬火数值模拟中的应用[J]. 上海交通大学学报, 2001, 35(3): 352
[9] Denis S, Gautier E, Simon A,Beck G, Stress-phase transforma- tion interactions-basic principles, modeling and calculation of internal stress[J]. Material Science and Technology, 1985, 1(10): 805
[10] Denis S,Sjostrom S,Simon A, Coupled temperature,stress,phase-transformation calculation model numerical illustration of the internal stress evolution during cooling of a eutectoid carbon steel cylinder[J]. Metallurgical Transaction, 1987, 18(7): 1203
[11] Liu C C, Yao K F, Gao G F, et al.Stress and strain of martensite transformation kinetics and transformation plasticity[J]. Acta Metallurgica Sinica, 1999, 35(11): 1125(刘春成, 姚可夫, 高国峰等. 应力应变对马氏体相变动力学及相变塑性影响的研究[J]. 金属学报, 1999, 35(11): 1125)
[12] Rammerstorfer F G, Fischer D F, Mitter W, et al.On thermo-elastic-plastic analysis of heat treatment processes including creep and phase changes[J]. Computers & Structures, 1981, 13(5-6): 771
[13] Luo F, Han L F, Gu J F, et al.3Cr2Mo steel, martensitic tra- nsformation plasticity and stress effect on the kinetics of phase transformation[J]. Heat Treatment of Materials Journal, 2011, 32(6): 98(罗芳, 韩利战, 顾剑锋等. 3Cr2Mo钢马氏体相变塑性及应力对其相变动力学的影响[J]. 材料热处理学报, 2011, 32(6): 98)
[14] Koisten D P, Marburger R E.A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels[J]. Acta Metallurgica, 1959, 7(1): 59
[15] Greenwood G W, Johnson R H.The deformation of metals under small stresses during phase transformations[J]. Proceedings of the Royal Society A . 1965, 283(1394): 403
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.