Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 155-160    DOI: 10.11901/1005.3093.2016.793
  研究论文 本期目录 | 过刊浏览 |
载钯细菌纤维素纳米纤维复合膜用于乙醇的电催化氧化
敖克龙, 李大伟, 姚壹鑫, 吕鹏飞, 魏取福()
江南大学生态纺织教育部重点实验室 无锡 214122
Electro-catalytic Activity of Composite Films of Pd-doped Bacterial Cellulose Nano-fibers for Ethanol Oxidation
Kelong AO, Dawei LI, Yixin YAO, Pengfei LV, Qufu WEI()
Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, China
引用本文:

敖克龙, 李大伟, 姚壹鑫, 吕鹏飞, 魏取福. 载钯细菌纤维素纳米纤维复合膜用于乙醇的电催化氧化[J]. 材料研究学报, 2018, 32(2): 155-160.
Kelong AO, Dawei LI, Yixin YAO, Pengfei LV, Qufu WEI. Electro-catalytic Activity of Composite Films of Pd-doped Bacterial Cellulose Nano-fibers for Ethanol Oxidation[J]. Chinese Journal of Materials Research, 2018, 32(2): 155-160.

全文: PDF(2743 KB)   HTML
摘要: 

以发酵合成的细菌纤维素(BC)为载体支架,用一步化学还原法在BC上直接生长钯纳米颗粒(Pd NPs),制备出载钯细菌纤维素纳米纤维复合膜(Pd/BCF)。X射线衍射(XRD)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)等测试结果表明,Pd NPs比较均匀地分散在纤维表面及介孔中,粒径约为10 nm,载量约为19.0%。电化学测试如循环伏安(CV)、电化学阻抗谱(EIS)、计时电流(CA)、计时电位曲线(CP)等的测试结果表明,与传统的碳材料载体和Pt催化剂相比,Pd/BCF对碱性介质中乙醇电催化氧化的活性显著提高,且在反应中的抗中毒能力较强。

关键词 复合材料燃料电池乙醇电催化细菌纤维素    
Abstract

Bacterial cellulose nanofibers (BCFs) were synthesized by fermentation process and then with the prepared BCFs as carrier material, composite films of Pd-doped bacterial cellulose nanofibers (Pd/BCF) were prepared by depositing nano-particles of Pd (Pd-NPs) on the carrier via chemical reduction process. The prepared Pd-doped BCFs and composite films Pd/BCF were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS), chronoamperometry (CA), and chronopotentiometry (CP). The results show that Pd-NPs were well dispersed on BCFs and especially in the mesoporous of BCFs. The composite films contain c.a. 19% (mass fraction) of Pd-NPs with a mean particle size c.a. 10 nm. The composite of Pd/BCF had better catalytic activity in contrast to the traditional carbon carrier material and Pt-catalyst. Besides, the composite of Pd/BCF exhibited relatively high poison tolerance during the ethanol oxidation process.

Key wordscomposite    fuel cell    ethanol    electro-catalytic    bacterial cellulose    palladium
收稿日期: 2016-12-30     
ZTFLH:  TM9114  
基金资助:江苏省自然科学基金(BK20150155),江苏省六大高峰人才项目(2014-XCL001),中央高校基本科研业务费专项资金(JUSRP51505,JUSRP115A04, JUSRP51621A),江苏高校优势学科建设工程(PAPD)
作者简介:

作者简介 敖克龙,男,1993年生,硕士生

图1  Pd/BCF的SEM照片(插图为Pd/BCF的HR-SEM图)、Pd/BCF的TEM照片以及Pd/BCF中Pd NPs的粒径分布直方图
图2  Pd/BCF的XRD图谱
图3  各修饰电极的EIS测试图
图4  不同修饰电极在1 mol/L NaOH溶液时的循环伏安曲线
图5  乙醇在不同修饰电极上的电氧化循环伏安曲线
Catalyst
electrodes
ES/V EP /V IP/mAcm-2 References
BC 1.25×10-2
Pd/BCF-10 μL -0.63 -0.19 15.60
Pd/BCF-20 μL -0.69 -0.22 23.63
Pd/Vulcan XC-72 -0.60 -0.10 15.70 [7]
Pd/graphene -0.65 -0.09 23.20
Pt/C 17.53 [18]
PtMo/C 20.83
Pd/t-CNF/GC -0.78 -0.23 57.00 [11]
表1  几种不同催化剂上乙醇的电氧化性能比较
图6  不同修饰电极的计时电流曲线
图7  乙醇在不同修饰电极上的电氧化计时电位曲线
图8  乙醇在Pd/BCF电极上的电催化氧化机理图
[1] Zhu Y, Zhou Y Q, Wei J D, et al.Research progress of anode electrocatalysts for direct ethanol fuel cell[J]. Mod. Chem. Ind., 2016, 36(4): 18(朱昱, 周燕琴, 魏金栋等. 直接乙醇燃料电池电催化剂研究进展[J]. 现代化工, 2016, 36(4): 18)
[2] Dong H Z, Dong L F.Research on electrocatalytic activity of carbon nanotube-supported Pt-bimetallic nanoparticles for methanol and ethanol oxidations[J]. Chin. J. Mater. Res., 2011, 25: 579(董红周, 董立峰. 单壁碳纳米管负载Pt基二元金属催化剂对甲醇和乙醇氧化的电催化性能研究[J]. 材料研究学报, 2011, 25: 579)
[3] Vigier F, Coutanceau C, Hahn F, et al.On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies[J]. J. Electroanal. Chem., 2004, 563: 81
[4] An L, Zhao T S, Li Y S.Carbon-neutral sustainable energy technology: Direct ethanol fuel cells[J]. Renew. Sust. Energ. Rev., 2015, 50: 1462
[5] Vohra M, Manwar J, Manmode R, et al.Bioethanol production: Feedstock and current technologies[J]. J. Environ. Chem. Eng., 2014, 2: 573
[6] Li Q X, Liu M S, Xu Q J, et al.Progress of Pd-based catalysts for fuel cells[J]. Chinese J. Power Sources, 2013, 37: 1473(李巧霞, 刘明爽, 徐群杰等. 燃料电池Pd催化剂研究进展[J]. 电源技术, 2013, 37: 1473)
[7] Wen Z L, Yang S D, Song Q J, et al.High activity of Pd/graphene catalysts for ethanol electrocatalytic oxidation[J]. Acta Phys. - Chim. Sin., 2010, 26: 1570(温祝亮, 杨苏东, 宋启军等. 石墨烯负载高活性Pd催化剂对乙醇的电催化氧化[J]. 物理化学学报, 2010, 26: 1570)
[8] Sekhar A C S, Meera C J, Ziyad K V, et al. Synthesis and catalytic activity of monodisperse gold-mesoporous silica core-shell nanocatalysts[J]. Catal. Sci. Technol., 2013, 3: 1190
[9] Gong Y M, Chen M Y, Guo J, et al.Synthesis of functionalized bacterial cellulose for preparing gold nanoparticles[J]. J. Dalian Polytech. Univ., 2016, (4): 285(宫玉梅, 陈美妍, 郭静等. 细菌纤维素纳米金复合材料的制备[J]. 大连工业大学学报, 2016, (4): 285)
[10] Mahendiran C, Maiyalagan T, Scott K, et al.Synthesis of a carbon-coated NiO/MgO core/shell nanocomposite as a Pd electro-catalyst support for ethanol oxidation[J]. Mater. Chem. Phys., 2011, 128: 341
[11] Qin Y H, Yang H H, Zhang X S, et al.Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium[J]. Int. J. Hydrogen Energ., 2010, 35: 7667
[12] Wu X D, Lu C H, Zhou Z H, et al.Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environ. Sci.: Nano, 2014, 1: 71
[13] Yu X B, Quan W H, Bian Y R.Novel biopolymer-microbial cellulose and its commercial applications[J]. J. Cell. Sci. Technol., 1999, 7(3): 42(余晓斌, 全文海, 卞玉荣. 细菌纤维素的商业化用途[J]. 纤维素科学与技术, 1999, 7(3): 42)
[14] Son S U, Jang Y J, Park J, et al.Designed synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions[J]. J. Am. Chem. Soc., 2004, 126: 5026
[15] Cai Z J, Kim J.Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility[J]. Cellulose, 2010, 17: 83
[16] Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT and Ni, Part II: Methanol electrooxidation in 1 M KOH[J]. Int. J. Hydrogen Energ., 2009, 34: 2052
[17] Yang S D, Shen C M, Liang Y Y, et al.Graphene nanosheets-polypyrrole hybrid material as a highly active catalyst support for formic acid electro-oxidation[J]. Nanoscale, 2011, 3: 3277
[18] Li L, Yuan X X, Xia X Y, et al.Effects of Mo doping on properties of Pt/C as catalyst towards electro-oxidation of ethanol[J]. J. Inorg. Mater., 2014, 29: 1044(李琳, 原鲜霞, 夏小芸等. Mo掺杂对Pt/C催化剂乙醇氧化催化性能的影响[J]. 无机材料学报, 2014, 29: 1044)
[19] Fang X, Shen P K.Mechanism of ethanol electrooxidation on Pd electrode[J]. Acta. Phys. - Chim. Sin., 2009, 25: 1933(方翔, 沈培康. 乙醇在钯电极上的电氧化机理[J]. 物理化学学报, 2009, 25: 1933)
[20] Tripkovi? A V, Popovi? K D, Lovi? J D.The influence of the oxygen-containing species on the electrooxidation of the C1-C4 alcohols at some platinum single crystal surfaces in alkaline solution[J]. Electrochim. Acta, 2001, 46: 3163
[21] Zhang Z Y, Xin L, Sun K, et al.Pd-Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte[J]. Int. J. Hydrogen Energ., 2011, 36: 12686
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.