Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (3): 233-240    DOI: 10.11901/1005.3093.2016.200
  研究论文 本期目录 | 过刊浏览 |
基于细观结构的铝电解阴极炭块钠扩散过程的数值分析和实验研究
刘庆生1(),许真铭2,汤卫东3
1 江西理工大学冶金与化学工程学院 赣州 341000
2 中南大学冶金与环境工程学院 长沙 410083
3 东北大学冶金学院 沈阳 110819
Numerical Analysis and Experimental Research of Sodium Diffusion Process Based on Microstructure of Electrolytic Cathode Carbon Block
Qingsheng LIU1(),Zhenming XU2,Weidong TANG3
1 Falculty of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
2 College of Metallurgical and Environmental Engineering, Central South University, Changsha 410083, China 3 School of Metallurgy, Northeastern University, Shenyang 110819, China
引用本文:

刘庆生,许真铭,汤卫东. 基于细观结构的铝电解阴极炭块钠扩散过程的数值分析和实验研究[J]. 材料研究学报, 2017, 31(3): 233-240.
Qingsheng LIU, Zhenming XU, Weidong TANG. Numerical Analysis and Experimental Research of Sodium Diffusion Process Based on Microstructure of Electrolytic Cathode Carbon Block[J]. Chinese Journal of Materials Research, 2017, 31(3): 233-240.

全文: PDF(1498 KB)   HTML
摘要: 

依据铝电解阴极炭块结构的非匀质特性,将其看作由炭骨料和沥青粘合剂组成的多相复合材料,从细观结构的角度研究了钠的扩散过程。采用Matlab编写不同炭骨料粒度组成和含量的随机圆、椭圆、多边形骨料投放模型程序,得到七种阴极炭块细观结构模型图片,并以igs模型文件形式导入ANSYS建立了二维有限元数值模型。依据扩散方程和热传导方程的相似性,采用ANSYS的热分析单元对钠扩散过程进行模拟求解,分析了炭骨料粒度组成、含量和形貌对钠扩散过程的影响。结果表明,与炭块中沥青相比,炭骨料对炭块中的钠扩散的阻碍作用更大,炭骨料颗粒圆度越小、骨料粒度组成越小、含量越高,则钠的扩散速率越低。对于粒度组成为0.003~0.006 m、含量为80%的圆形炭骨料模型,钠的扩散速度最低;模拟结果与试验结果有较好的一致性,证明了模拟的精确性和可靠性。

关键词 无机非金属材料钠扩散有限元模拟阴极炭块骨料    
Abstract

Sodium erosion has become a major factor affecting the durability of electrolytic cathode carbon block, therefore it is of significance to study the diffusion process of sodium in carbon block. In general, the carbon block can be considered as a multi-phase composite with carbon as aggregate and asphalt as binder, thus the sodium diffusion process might relate closely to the microscopic structure of the carbon block. First, seven microstructure models of cathode carbon block could be established by means of software Matlab in consideration of the different particle distribution and the amount of the carbon aggregate of various shapes such as circle, ellipse and polygon, and then which were through igs model file format introduced into ANSYS to establish a two-dimensional finite element numerical model. The ANSYS thermal analysis unit was used to simulate sodium diffusion process which based on the similarity of diffusion equation and the heat conduction equation, and analyzed the influence the size distribution, the amount and the shape of the carbon aggregate on the sodium diffusion process. The results show that the carbon aggregate shows stronger barrier effect to the sodium diffusion rather than the asphalt. For the carbon block with narrower range of the particle size distribution, lower roundness of the aggregate particles and higher amount of the aggregate, the sodium diffusion rate is slow down over time. The sodium diffusion rate is the slowest for the carbon block with 80% circular aggregate and the aggregate size distribution within a range 0.003~0.006 m. Furthermore, the above simulation results agree fairly well with experimental ones which proved the accuracy and reliability of the simulation.

Key wordsinorganic non-metallic materials    sodium diffusion    finite element simulation    cathode carbon block    aggregate
收稿日期: 2016-04-13     
基金资助:国家自然科学基金(51264011、51564019)
Heat conduction Heat flow density Coefficient of thermal conductivity Temperature Heat
J/(m2s) J/(m·K·s) K J
Sodium diffusion Sodium diffusion flux Diffusion coefficient of sodium Concentration of sodium Sodium
kg/(m2s) m2/s kg/m3 Kg
表1  热传导与钠扩散计算物理量的量纲对照
Number Shape Filling ratio Diameter of grading
1 circle 70% 0.003~0.006 m
2 circle 70% 0.003~0.009 m
3 circle 70% 0.003~0.015 m
4 circle 60% 0.003~0.009 m
5 circle 80% 0.003~0.009 m
6 polygon 70% 0.003~0.009 m
7 ellipse 70% 0.003~0.009 m
表2  不同骨料模型控制参数
图1  随机骨料几何模型
图2  圆形炭块钠扩散几何模型及网格化
Aggregate (anthracite) Adhesive (bitumen)
Density 1940 kg/m3 1200 kg/m3
Diffusion coefficient
of sodium
8.9×10-9 m2/s 9.7×10-8 m2/s
表3  阴极炭块材料参数[10]
图3  不同骨料模型钠浓度分布云图
图4  骨料颗粒圆度示意图
图5  不同形貌骨料模型中心钠浓度-时间分布图
图6  不同级配骨料模型钠浓度云图
图7  不同骨料粒度组成骨料模型中心钠浓度-时间分布图
图8  不同骨料颗粒含量的钠浓度分布云图
图9  不同骨料颗粒含量的钠浓度-时间曲线
图10  铝电解实验装置结构示意图
图11  不同时间阴极炭块钠扩散CT扫描横向剖面图像
图12  不同时间炭块数值模拟钠浓度分布云图
图13  炭块钠扩散数值计算与实验的比较
[1] Wang Y, Tie J, Sun S, et al.Simulation method based on equivalent circuit to investigate the circuit characteristics in aluminum reduction cell[J]. Trans. Indian Inst. Met., 2015, 68(3): 443
[1] [2 ]Tsch?pe K, Sch?ning C, Rutlin J, et al. Chemical degradation of cathode linings in Hall-Héroult cells - an autopsy study of three spent pot linings[J]. Metall. Mater. Trans., 2012, 43B: 290
[3] Vasshaug K, Foosn?s T, Haarberg G M, et al.Formation and dissolution of aluminium carbide in cathode blocks[A]. Light Metals 2009[M]. The Minerals, Metals & Materials Society (TMS), 2009: 1111
[4] Allard F, Soucy G, Rivoaland L.Formation of deposits on the cathode surface of aluminum electrolysis cells[J]. Metall. Mater. Trans., 2014, 45B: 2475
[5] Lossius L P, ?ye H A.Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes[J]. Metall. Mater. Trans., 2000, 31B: 1213
[6] Kunihiro, Hideki etc. First-principles study of alkali metal-graphite intercalation compounds[J]. Journal of Power Sources, 2013, 243:585
[7] Brissona P Y, Darmstadtb H, Fafardc M, et al.X-ray photoelectron spectroscopy study of sodium reactions in carbon cathode blocks of aluminium oxide reduction cells[J]. Carbon, 2006, 44(8): 1438
[8] Lorentz Petter Lossius, Harald A.?ye. Melt penetration and chemical reactions in 16 industrial aluminum carbon cathodes[J]. Metallurgical and Materials Transactions B, 2000, 31(6): 1213
[9] Zhou X G, Li K F.Simulation analysis of chloride penetration in concrete with finite volume method[J]. Engineering mechanics, 2013, 7: 34
[9] (周新刚, 李克非. 氯离子在混凝土中扩散传输的有限体积法模拟分析[J]. 工程力学, 2013, 7: 34)
[10] Zolochevsky A, Hop J G, Foosnaes T, ?ye H A. Rapoport-Samoilenko test for cathode materials-II swelling with external pressure and effect of creep[J]. Carbon 2005, 43: 1222
[11] Wang L C, Bao J W.Meso scale model of moisture transfer in cracking concrete[J]. Journal of Building Materials, 2014, 17(6): 972
[11] (王立成, 鲍玖文. 开裂混凝土中水分传输过程的细观模型[J]. 建筑材料学报, 2014, 17(6): 972)
[12] Xiao J Z, Lu D, Ma Z M.Mesoscopic numerical simulation on chloride diffusion in concrete with random distributed recycled coarse aggregate[J]. J. Southeast Univ.(Nat. Sci. Ed.), 2014, 44: 1240
[12] (肖建庄, 卢登, 马志鸣. 考虑再生粗骨料随机分布的混凝土氯离子扩散细观数值模拟[J]. 东南大学学报(自然科学版), 2014, 44: 1240)
[13] Xiao J Z, Lu D, Ma Z M. Meso scale numerical simulation of chloride diffusion in concrete considering random distribution of recycled coarse aggregate[J].
[13] (肖建庄, 卢登, 马志鸣. 考虑再生粗骨料随机分布的混凝土氯离子扩散细观数值模拟[J]. 东南大学学报, 2014, 44(6): 1240)
[14] S?rlie M, ?ye H A.Cathodes in aluminium electrolysis, 2nd. Dusseldorf: Aluminium-Verlag, 1994. Journal of Southeast University,2014, 44(6)
[15] Chauke1 L, Garbers-Craig A M. Reactivity between carbon cathode materials and electrolyte based on industrial and laboratory data[J]. Carbon, 2013, 58: 40
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.