Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (7): 531-537    DOI: 10.11901/1005.3093.2015.731
  本期目录 | 过刊浏览 |
Mg-3Zn-2Gd合金轧制态和退火态的组织与力学性能*
戚文军1(), 冯晓伟2, 刘汪涵博1,3, 黎小辉1
1. 广东省材料与加工研究所 广州 510650
2. 美的电冰箱事业部 合肥 230000
3. 中南大学材料科学与工程学院 长沙 410083
Microstructure and Mechanical Properties of Rolled-and Annealed-Mg-3Zn-2Gd Alloy
QI Wenjun1,*(), FENG Xiaowei2, LIU Wanghanbo1,3, LI Xiaohui1
1. Guangdong Institute of Materials and Processing, Guangdong Academy of Sciences, Guangzhou 510650, China
2. Midea Refrigeration Division, Hefei 230000, China
3. School of Materials Science and Engineering, Central South University, Changsha 410083, China
引用本文:

戚文军, 冯晓伟, 刘汪涵博, 黎小辉. Mg-3Zn-2Gd合金轧制态和退火态的组织与力学性能*[J]. 材料研究学报, 2016, 30(7): 531-537.
Wenjun QI, Xiaowei FENG, Wanghanbo LIU, Xiaohui LI. Microstructure and Mechanical Properties of Rolled-and Annealed-Mg-3Zn-2Gd Alloy[J]. Chinese Journal of Materials Research, 2016, 30(7): 531-537.

全文: PDF(5057 KB)   HTML
摘要: 

利用光学显微镜和扫描电子显微镜分析了热轧态及退火态Mg-3Zn-2Gd合金的组织, 并测试了其室温拉伸力学性能。结果表明: 合金板材经应变为23%~67%的轧制后组织得到细化, 平均晶粒尺寸由10 μ m减至轧制应变为67%时的4 μ m。初始组织中的大量孪晶和剪切带逐渐减少; 随着轧制应变增至67%, 剪切带消失, 组织由动态再结晶晶粒和少量孪晶组成。拉伸力学性能显著提高, 抗拉强度 σ b和屈服强度 σ 0.2分别由未轧制时的255 MPa和215 MPa提高至轧制应变为67%时的305 MPa和300 MPa, 而伸长率 δ 先提高后降低。再经573 K退火处理1 h后, 合金组织发生静态再结晶, 变形不均匀区域消失, 由细小均匀等轴晶组成; σ b和 σ 0.2分别降至265 MPa和235 MPa, δ 提高至19.0%; 拉伸断口呈现大量韧窝, 表现为韧性断裂。

关键词 金属材料镁合金板轧制组织退火组织力学性能轧制应变    
Abstract

Microstructure of hot rolled and annealed Mg-3Zn-2Gd alloy was characterized by optical microscopy and scanning electron microscopy. Meanwhile, their tensile mechanical properties at ambient temperature were tested. The results show that the microstructure of the alloy sheet is refined after rolling by the strain range from 23% to 67% and the average grain size decreases from 10 μm to 4 μm by the rolling strain of 67%. Lots of twins and shear bands in the initial microstructure decrease gradually. When the rolling strain increases to 67%, the shear bands disappear, and meanwhile the dynamic recrystallization grains and few twins exist, while the tensile mechanical properties of the alloy are enhanced significantly. Tensile strength σb and yield strength σ0.2 increase from 255 MPa and 215 MPa for the non-rolled alloy to 305 MPa and 300 MPa for the rolled alloy by strain 67% respectively, while the elongation δ first increases, and then decreases. After annealed at 573 K for 1 h, the rolled alloy experienced static recrystallization, in the meanwhile, the non-uniform deformation areas disappeared and finally showed a microstructure of fine and uniform equiaxed grains, and the relevant σ b and σ 0.2 decreased to 265 MPa and 235 MPa, respectively, while δ slightly increases to 19.0%. The tensile fracture consists of a large number of dimples presenting the typical characteristic of ductile fracture.

Key wordsmetallic materials    magnesium alloy sheet    rolling microstructure    annealing microstructure    mechanical properties    rolling strain
收稿日期: 2015-12-15     
基金资助:* 广东省金属强韧化技术与应用重点实验室项目2014B030301012、广州市先进金属结构材料重点实验室项目201509010003、广东省研发与产业化项目2013B090600062、广东省金属材料与加工专业镇联合创新公共平台2013B091602002和广东省铝镁轻金属材料产业技术创新战略联盟示范建设2014B090907008资助
作者简介: To whom correspondence should be addressed, Tel: (020)61086180, E-mail:qiwenjun987@sohu.com

本文联系人: 戚文军

图1  Mg-3Zn-2Gd合金挤压板材经轧制前后的OM照片
图2  Mg-3Zn-2Gd合金挤压板材经应变67%轧制后的EDS分析结果
图3  Mg-3Zn-2Gd合金挤压板材分别经轧制和退火后的拉伸断口SEM像
图4  Mg-3Zn-2Gd合金轧制板材经退火后的OM和SEM像
Strain/% Condition σ b /MPa σ 0.2 /MPa δ /%
0 extrusion sheet 255 215 11.0
23.3 rolling 270 230 16.0
annealing 270 230 18.5
33 rolling 300 295 13.0
annealing 260 220 17.5
67 rolling 305 300 7.5
annealing 265 235 19.0
表1  Mg-3Zn-2Gd合金挤压板材分别经轧制和退火后的力学性能
1 Y. Sun, M. X. Kong, X. H. Jiao, In-vitro evaluation of Mg-4.0Zn-0.2Ca alloy for biomedical application, Transactions of Nonferrous Metals Society of China, 21(S2), 252(2011)
doi: 10.1016/S1003-6326(11)61587-2
2 E. L. Zhang, L. Yang, Microstructure, mechanical properties and bio-corrosion properties of Mg-Zn-Mn-Ca alloy for biomedical application, Materials Science and Engineering A, 497(1-2), 111(2008)
doi: 10.1016/j.msea.2008.06.019
3 Q. M. Peng, N. Ma, D. Q. Fang, H. Li, R. P. Liu, Y. J. Tian, Microstructures, aging behaviour and mechanical properties in hydrogen and chloride media of backward extruded Mg-Y based biomaterials, Journal of the Mechanical Behavior of Biomedical Materials, 17, 176(2013)
doi: 10.1016/j.jmbbm.2012.08.017 pmid: 23127631
4 T. Obara, H. Yoshinga, S. Morozumi, {112-2}<1123> slip system in magnesium, Acta Metall, 21(7), 845(1973)
5 J. F. Stohr, J. P. Poirier, Electron-microscope study of pyramidal slip {112-2}<1123> in Mg, Philosophical Magazine , 25(6), 1313(1972)
6 H. Yan, R. S. Chen, E. H. Han, Room-temperature ductility and anisotropy of two rolled Mg-Zn-Gd alloys, Materials Science and Engineering A, 527(15), 3317(2010)
doi: 10.1016/j.msea.2010.02.038
7 D. Wu, R. S. Chen, E. H. Han, Excellent room-temperature ductility and formability of rolled Mg-Zn-Gd alloy sheets, Journal of Alloys and Compounds, 509(6), 2856(2011)
doi: 10.1016/j.jallcom.2010.11.141
8 D. Wu, R. S. Chen, W. N. Tang, E. H. Han, Influence of texture and grain size on the room-temperature ductility and tensile behavior in a Mg-Zn-Gd alloy processed by rolling and forging, Materials and Design, 41, 306(2012)
doi: 10.1016/j.matdes.2012.04.033
9 DING Yunpeng, LE Qichi, ZHANG Zhiqiang, CUI Jianzhong, Microstructure and mechanical property evolution of Mg-Zn-Gd alloy with different initial states during processing, Journal of Northeastern University( Natural Science), 35(9), 1262(2014)
9 (丁云鹏, 乐启炽, 张志强, 崔建忠, 不同初始态Mg-Zn-Gd加工过程中组织和性能的演变, 东北大学学报(自然科学版), 35(9), 1262(2014))
doi: 10.3969/j.issn.1005-3026.2014.09.011
10 H. Y. Yu, H. G. Yan, J. H. Chen, B. Su, Y. Zheng, Y. J. Shen, Z. J. Ma, Effects of minor Gd addition on microstructures and mechanical properties of the high strain-rate rolled Mg-Zn-Zr alloys, Journal of Alloys and Compounds, 586(15), 757(2014)
doi: 10.1016/j.jallcom.2013.10.005
11 CUI Zhongqi, JIA Yaochun, Physical Metallurgy and Heat Treatment (Beijing, the Press of Machinery Industry, 2007)
11 (崔忠圻, 贾耀春, 金属学与热处理 (北京, 机械工业出版社, 2007))
12 ZHENG Ziqiao, Fundamentals of Materials Science (Changsha, the Press of Central South University, 2005)
12 (郑子樵, 材料科学基础 (长沙, 中南大学出版社, 2005))
13 LIU Qing, Research progress on plastic deformation mechanism of Mg alloys, Acta Metallurgica Sinica, 46(11), 1458(2010)
13 (刘庆, 镁合金塑性变形机理研究进展, 金属学报, 46(11), 1458(2010))
doi: DOI: 10.3724/SP.J.1037.2010.00446
14 O. Sitdikov, R. Kaibyshev, Dynamic recrystallization in pure magnesium, Materials Transactions, 42(9), 1928(2001)
15 S. E. Ion, F. J. Humphreys, S. H. White, Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium, Acta Metallurgica, 30(10), 1909(1982)
doi: 10.1016/0001-6160(82)90031-1
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.