Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (7): 524-530    DOI: 10.11901/1005.3093.2015.684
  本期目录 | 过刊浏览 |
化学改性硅藻土制备阻燃材料及微结构研究*
王亚超(), 赵江平
西安建筑科技大学材料与矿资学院 西安 710055
Preparation and Microstructure of Chemical Modified Diatomite as Flame Retardant
WANG Yachao**(), ZHAO Jiangping
College of Materials & Mineral Resources, Xi'an University of Architecture and Technology, Xi’an 710055, China
引用本文:

王亚超, 赵江平. 化学改性硅藻土制备阻燃材料及微结构研究*[J]. 材料研究学报, 2016, 30(7): 524-530.
Yachao WANG, Jiangping ZHAO. Preparation and Microstructure of Chemical Modified Diatomite as Flame Retardant[J]. Chinese Journal of Materials Research, 2016, 30(7): 524-530.

全文: PDF(3372 KB)   HTML
摘要: 

利用硅藻土松散、质轻、多孔、富含活性硅等特点, 制备用于外墙保温板的阻燃材料, 并采用多种分析手段对其进行表征。结果表明, 当同时以NaOH (2 molL-1)和Na2SiO3 (1 molL-1))为化学改性剂, 采用溶胶-凝胶法制备的硅藻土基阻燃材料可使聚苯板(EPS)的极限氧指数达到36.8%, 燃烧性能达到UL-94 V1级别。提出并阐述了NaOH和Na2SiO3对硅藻土的协同效应, 扫描电镜(SEM)结果证实NaOH和Na2SiO3同时作用时有助于硅藻土形成结构更加致密的无定型硅质层, X-射线衍射分析(XRD)和红外光谱(FT-IR)结果证实, 在碱性环境下硅藻土结构发生了“解聚-重组”, 其在燃烧过程中进一步发生重组。

关键词 无机非金属材料阻燃材料硅藻土协同效应微结构    
Abstract

The diatomite based flame-retardant materials for external thermal insulation board of exterior wall were preparedby sol-gels method with NaOH (2 molL-1) and Na2SiO3 (1 molL-1) simultaneously as the chemical activator, and then characterized by means of various methods. Results showed that aftera thin-plastering of the prepared flame-retardant diatomitewas applied on expandable polystyrene board, the limiting oxygen indexthe complex EPSboard can reached 36.8%, and itscombustion performance can meetthe requirement of UL-94 V1. SEM results demonstrated that the NaOH and Na2SiO3 were benefit for the diatomite to form dense amorphous silica layer, XRD and FT-IR results showed that "depolymerization-reconstruction" of the diatomite structure occurred in the alkaline media, and which would further be reconstructed during firing.

Key wordsinorganic non-metallic materials    flame-retardant materials    diatomite    synergistic effects    microstructure
收稿日期: 2015-11-27     
基金资助:西安建筑科技大学博士人才基金RC1519资助项目
作者简介: null

本文联系人: 王亚超

Raw material SiO2 Al2O3 Fe2O3 K2O CaO TiO2 Ignition loss
Diatomite 92.93 3.21 0.73 0.43 0.85 0.34 1.51
表1  硅藻土的化学组成
图1  硅藻土基材料及其燃烧后的矿物晶相
Samples NaOH/molL-1 Na2SiO3/molL-1 LOI/ % T1/s T2/s T3/s Melting drop UL-94
S0
S1
0
2
0
0
28.5
32.8
18
9
24
15
35
28
Yes
Yes
V2
V2
S2 3 0 33.5 8 13 25 No V1
S3 4 0 35.2 7 13 20 No V1
S4 5 0 35.5 6 12 18 No V1
S5 0 1 32.5 15 26 32 Yes V2
S6 0 1.5 33.9 13 20 26 No V1
S7 0 2 34.5 12 13 20 No V1
S8 0 2.5 34.7 11 12 16 No V1
S9 1 0.5 33.2 8 20 23 No V1
S10 1.5 0.75 34.8 8 18 18 No V1
S11 2 1 36.6 7 10 16 No V1
S12 2.5 1.25 36.8 7 9 15 No V1
表2  刷涂硅藻土基阻燃材料EPS的阻燃性能
图2  硅藻土的化学活化示意图
图3  样品的TG/DSC曲线
图4  硅藻土原料和样品的傅里叶-红外光谱
图5  硅藻土原料及样品的微观形貌
图6  经燃烧后样品的微观形貌
1 H. Siska, L. Claire, P. Didier, L. Jose-Marie, G. Francois, Flame retardancy of silicone-based materials, Polym. Degrad. Stabil., 94, 465(2009)
doi: 10.1016/j.polymdegradstab.2008.11.019
2 B. Du, Z. Guo, P. Song, H. Liu, Z. Fang, Y. Wu, Flame retardant mechanism of organo-bentonite in polypropylene, Appl. Clay Sci., 45, 178(2009)
doi: 10.1016/j.clay.2009.05.003
3 P. Kiliaris, C.D. Papaspyrides,Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy, Prog. Polym. Sci., 35, 902(2010)
4 B. Wang, H. Sheng, Y. Shi, Recent advances for microencapsulation of flame retardant, Polym. Degrad. Stabil., 113, 96(2015)
doi: 10.1016/j.polymdegradstab.2015.01.008
5 D. Vesely, A. Kalendova, P. Kalenda, A study of diatomite and calcined kaoline properties in anticorrosion protective materials, Prog. Polym. Sci., 68, 173(2010)
doi: 10.1016/j.porgcoat.2010.02.007
6 V. I. Loganina, E. E. Simonov, W. Jezierski, D. Małaszkiewicz, Application of activated diatomite for dry lime mixes, Constr. Build. Mater., 65, 29(2014)
doi: 10.1016/j.conbuildmat.2014.04.098
7 H. Liang, S. Zhou, Y. Chen, F. Zhou, C. Yan.Diatomite coated with Fe2O3 as an efficient heterogeneous catalyst for degradation of organic pollutant, J. Taiwan Inst. Chem. Eng., 49, 105(2015)
doi: 10.1016/j.jtice.2014.11.002
8 Z. Sun, Z. Hu, Y. Yan, S. Zheng, Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts, Appl. Surf. Sci., 314, 251(2014)
doi: 10.1016/j.apsusc.2014.06.171
9 B. Wang, F. C. Godoi, Z. Sun, Q. Zeng, S. Zheng, R. Frost, Synthesis, characterization and activity of an immobilized photocatalyst:Natural porous diatomite supported titania nanoparticles, J. Colloid Interf. Sci., 438, 204(2015)
doi: 10.1016/j.jcis.2014.09.064 pmid: 25454443
10 C. Shi, A. F. Jiménez, A. Palomo, New cements for the 21st century: The pursuit of an alternative to Portland cement, Cement Concrete Res., 41, 750(2011)
doi: 10.1016/j.cemconres.2011.03.016
11 E. M. Gartner, D. E. Macphee, A physico-chemical basis for novel cementitious binders, Cement Concrete Res., 41, 736(2011)
doi: 10.1016/j.cemconres.2011.03.006
12 L. Wang, Y. Wang, A. Wang, X. Li, F. Zhou, Y. Hu, Highly acidic mesoporous aluminosilicates assembled from zeolitic subunits generated by controllable desilication of ZSM-5 in Na2SiO3 solution, Micro. Mes. Mater., 180, 242(2013)
doi: 10.1016/j.micromeso.2013.06.029
13 Y. J. Zhang, Y. Zhao, H. Li, D. L. Xu, Structure characterization of hydration products generated by alkaline activation of granulated blast furnace slag. J. Mater. Sci., 43, 7141(2008)
doi: 10.1007/s10853-008-3028-9
14 J. Leivo, M. Lindén, M. Ritola, Influence of thermal treatment conditions on the formation of phase-pure mullite derived from a nanoparticulate aluminosilicate precursor, Mater. Chem. Phys., 115, 56(2009)
doi: 10.1016/j.matchemphys.2008.11.018
15 W. C. Gu, G. Lv, H. Chen, G. Chen, W. Feng, G. Zhang, S. Yang,Investigation of morphology and composition of plasma electrolytic oxidation materials in systems of Na2SiO3-NaOH and (NaPO3)6-NaOH, J. Mater. Pro. Technol., 182, 28(2007)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.