Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (6): 457-464    DOI: 10.11901/1005.3093.2015.551
  研究论文 本期目录 | 过刊浏览 |
硬磁颗粒填充与充磁对磁敏弹性体磁控力学行为的影响*
赵慧婷1, 廖昌荣1(), 章鹏1, 简晓春2
1. 重庆大学光电技术及系统教育部重点实验室 重庆 400030
2. 重庆交通大学交通运输学院 重庆 400074
Effect of Hard Magnetic Filler and Magnetization on Magneto-control Mechanical Behavior ofMagneto-active Elastomers
ZHAO Huiting1, LIAO Changrong1,**(), ZHANG Peng1, JIAN Xiaochun2
1. Key Lab for Optoelectronic Technology and Systems, Chongqing University, Chongqing 400030, China
2. Transportation Institute, Chongqing Jiaotong University, Chongqing 400074, China
引用本文:

赵慧婷, 廖昌荣, 章鹏, 简晓春. 硬磁颗粒填充与充磁对磁敏弹性体磁控力学行为的影响*[J]. 材料研究学报, 2016, 30(6): 457-464.
Huiting ZHAO, Changrong LIAO, Peng ZHANG, Xiaochun JIAN. Effect of Hard Magnetic Filler and Magnetization on Magneto-control Mechanical Behavior ofMagneto-active Elastomers[J]. Chinese Journal of Materials Research, 2016, 30(6): 457-464.

全文: PDF(1248 KB)   HTML
摘要: 

制备了4种钕铁硼粉填充型磁敏弹性体和4种羰基铁粉与钕铁硼粉混合填充的磁敏弹性体, 对上述磁敏弹性体进行不同强度充磁, 并利用数码显微镜观察其微观结构, 使用振动样品磁强计测试了样品的磁化特性曲线, 采用流变仪对磁敏弹性体的力学性能进行测试, 分析不同充磁强度对钕铁硼粉填充型磁敏弹性体磁控力学性能的影响, 以及硬磁颗粒的质量分数与剩磁对磁敏弹性体磁控力学性能的影响。结果表明, 充磁强度越大, 钕铁硼粉填充型磁敏弹性体力学性能受磁场影响越大, 适量的硬磁颗粒、增大充磁能提高磁敏弹性体磁控范围。

关键词 有机高分子材料磁敏弹性体磁控力学性能硬磁颗粒剪切储能模量    
Abstract

Two types of magneto-active elastomers (MAEs) with fillers of NdFeB powder and powder mixture of carbonyl iron and NdFeB are prepared respectively, and then they were all magnetized by different magnetization intensities. The microstructure of MAEs is characterized by KEYENCE VHX-600 digital microscope. The magnetization characteristic curves and the mechanical properties of MAEs weremeasured by VSM and MCR-301 rheometer respectively. The influence of the fraction and magnetic remanence intensity of the hard magnetic fillers on the magneto-control mechanical behavior of the MAEs was carefully examined.The results demonstrated that the mechanical properties of MAEs filled with NdFeB powder were affected strongly by the intensity of magnetic field adoped for magnetization treatments. An appropriate amount of the hard magnetic fillers and the magnetization by higher magnetic field intensity are beneficial to the improvement of the shear storage modulus of the MAEs.

Key wordsorganic polymer materials    magneto-active elastomer    magneto-control mechanical property    hard magnetic filler    shear storage modulus
收稿日期: 2015-09-25     
ZTFLH:  TB324  
基金资助:* 国家自然科学基金项目 51575065和中央高校基本科研业务费 106112015CDJZR125517资助
作者简介: 本文联系人: 廖昌荣, 教授
图1  磁敏弹性体的制备流程
Samples Carbonyl iron powder NdFeB powder A component of RTV-2 Simethicone Magnetizing voltage
No. /%,mass fraction /%, mass fraction /%, mass fraction /%, mass fraction /V
1 0 70 15 15 -
2 0 70 15 15 0
3 0 70 15 15 700
4 0 70 15 15 1200
5 60 20 10 10 0
6 60 20 10 10 700
7 60 20 10 10 1000
8 60 20 10 10 1200
表1  磁敏弹性体的制备参数
图2  硬磁填充的磁敏弹性体内部微观结构: (a)各向异性; (b)各向同性
图3  硬磁弹性体的磁化特性曲线
图4  钕铁硼粉磁滞回线
图5  硬磁弹性体剪切储能模量与磁场的关系
图6  混合磁敏弹性体内部微观结构: (a) 未充磁; (b)充磁
图7  混合磁敏弹性体的磁化特性曲线
图8  不同充磁电压混合磁敏弹性体的剪切储能模量与磁场的关系
Samples
No.
Initial shear
storage modulus
(G0)/MPa
Magneto-induced
shear modulus
(ΔG)/MPa
MR effect
(β)/%
5 0.18 1.47 817
6 0.27 1.50 556
7 0.31 1.52 490
8 0.35 1.55 443
表2  混合磁敏弹性体的初始剪切储能模量、磁致剪切模量、磁流变效应
图9  不同配比的混合磁敏弹性体的储能模量与磁场的关系
图10  剩磁对70%+10%、40%+40%混合磁敏弹性体的储能模量与磁场关系的影响
1 G. Filipcsei, I. Csetneki, A. Szilagyi and M. Zrinyi, Magnetic field-responsive smart polymer composites, Adv. Polym. Sci., 206, 137(2007)
2 P. Saxena, M. Hossain, P. Steinmann, Nonlinear magneto-viscoelasticity of transversally isotropic magneto-active polymers, Proc. R. Soc., 470, 20140082(2014)
3 A. V. Chertovich, G. V. Stepanov, E. Y.Kramarenko and A. R. Khokhlov, New composite elastomers with giant magnetic response, Macromol. Mater. Eng., 295, 336(2010)
4 A. Stoll, M. Mayer, G. J.Monkman and M. Shamonin, Evaluation of highly compliant magneto-active elastomers with colossal magnetorheological response, J. Appl. Polym. Sci., 131, 39793(2014)
5 J. T. Zhu, Z. D.Xu and Y. Q. Guo, Magnetoviscoelasticity parametric model of an MR elastomer vibration mitigation device, Smart Mater. Struct., 21(7), 075034(2012)
doi: 10.1088/0964-1726/21/7/075034
6 LIAO Guojiang, Mechanical Property of Magnetorheological Elastomer and its Application in Vibration Control, PhD thesis (Anhui, University of Science and Technology of China, 2014))
6 (廖国江, 磁流变弹性体的力学性能及其在振动控制中的应用, 博士学位论文(安徽, 中国科技大学, 2014))
7 G. J. Liao, X. L. Gong, S. H. Xuan, C. J.Kang and L. H. Zong, Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer, Intell. Mater. Syst. Struct., 23, 25(2011)
doi: 10.1177/1045389X11429853
8 E. Galipeau, P. P. Castaneda, The effect of particle shape and distribution on the macroscopic behavior of magnetoelastic composites, Int. J. Solids Struct., 49, 1(2012)
doi: 10.1016/j.ijsolstr.2011.08.014
9 P. Andriushchenko, K. Nefedev,G. Stepanov, Calculations of magnetoactive elastomer reactions in a uniform external magnetic field, Eur. Phys. J. B, 87, 11(2014)
10 G. Stepanov, D. Borin, S. Odenbach, Magnetorheological effect of magneto-active elastomers containing large particles, J. Phys. Conf. Ser., 149(1), 012098(2009)
doi: 10.1088/1742-6596/149/1/012098
11 P. Zajac, J. Kaleta, D. Lewandowski and A. Gasperowicz, Isotropic magnetorheological elastomers with thermoplastic matrices: structure, damping properties and testing, Smart Mater. Struct., 19, 045014(2010)
12 O. V. Stolbov, Y. L. Raikher, G. V. Stepanov, A. V. Chertovich, E. Y.Kramarenko and A. R. Khokhlov, Low-frequency rheology of magnetically controlled elastomers with isotropic structure, Polym. Sci. Ser. A, 52, 1344(2010)
13 I. Bica, Magnetorheological elastomer-based quadrupolar element of electric circuits, Mater. Sci. Eng. B, 166, 94(2010)
doi: 10.1016/j.mseb.2009.10.020
14 A. S. Semisalova, N. S. Perov, G. V. Stepanov, E. Y.Kramarenko and A. R. Khokhlov, Strong magneto dielectric effect in magneto-rheological elastomers, Soft Matter, 9, 11318(2013)
15 G. V. Stepanov, A. V. Chertovich, E. Y. Kramarenko, Magnetorheological and deformation properties of magnetically controlled elastomers with hard magnetic filler, J. Magn. Magn. Mater., 324, 3448(2012)
doi: 10.1016/j.jmmm.2012.02.062
16 G. V. Stepanov, D. Y. Borinb, E. Y. Kramarenko, V. V. Bogdanov, D. A.Semerenko and P. A. Storozhenko, Magnetoactive elastomer based on magnetically hard filler: synthesis and study of viscoelastic and damping properties, Polym. Sci. Ser. A, 56(5), 603(2014)
doi: 10.1134/S0965545X14050149
17 E. Y. Kramarenko, A. V. Chertovich, G. V. Stepanov, A. S. Semisalova, L. A. Makarova, N. S.Perov and A. R. Khokhlov, Magnetic and viscoelastic response of elastomers with hard magnetic filler, Smart Mater. Struct., 24, 035002(2015)
doi: 10.1088/0964-1726/24/3/035002
18 G. V. Stepanov, D. Y. Borin, Y. L. Raikher, P. V.Melenev and N. S. Perov, Motion of ferroparticles inside the polymeric matrix in magnetoactive elastomers, J. Phys.: Condens. Matter., 20, 204121(2008)
doi: 10.1088/0953-8984/20/20/204121 pmid: 21694250
19 D. Y. Borin, G. V.Stepanov and S. Odenbach, Tuning the tensile modulus of magneto-rheological elastomers with magnetically hard powder, J. Phys. Conf. Ser., 412, 012040(2013)
doi: 10.1088/1742-6596/412/1/012040
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.